• Title/Summary/Keyword: Dimethylaluminum isopropoxide

Search Result 3, Processing Time 0.018 seconds

Atomic layer deposition of Al-doped ZnO thin films using dimethylaluminum isopropoxide as Al dopant

  • Lee, Hui-Ju;Kim, Geon-Hui;U, Jeong-Jun;Jeon, Du-Jin;Kim, Yun-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.178-178
    • /
    • 2010
  • We have deposited aluminum-doped ZnO thin films on borosilicate glass by atomic layer deposition. Diethylzinc (DEZ) and dimethylaluminum isopropoxide (DMAIP) were used as the metal precursor and the Al-dopant, respectively. Water was used as an oxygen source. DMAIP was successfully used as an aluminum precursor for chemical vapor deposition and ALD. All deposited films showed n-type conduction. The resistivity decreased to a minimum and then increased with increasing the aluminum content. The carrier concentration increased and the carrier mobility decreased with increasing the DMAIP to DEZ pulse ratio. The average optical transmittance was nearly 80 % in the visible part of the spectrum. The absorption edge moved to the shorter wavelength region with increasing the DMAIP to DEZ pulse ratio. Our results indicate that DMAIP is suitable for Al doping of ZnO films.

  • PDF

Non-stoichiometric AlOx Films Prepared by Chemical Vapor Deposition Using Dimethylaluminum Isopropoxide as Single Precursor and Their Non-volatile Memory Characteristics

  • Lee, Sun-Sook;Lee, Eun-Seok;Kim, Seok-Hwan;Lee, Byung-Kook;Jeong, Seok-Jong;Hwang, Jin-Ha;Kim, Chang-Gyoun;Chung, Taek-Mo;An, Ki-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2207-2212
    • /
    • 2012
  • Dimethylaluminum isopropoxide (DMAI, $(CH_3)_2AlO^iPr$) as a single precursor, which contains one aluminum and one oxygen atom, has been adopted to deposit non-stoichiometric aluminum oxide ($AlO_x$) films by low pressure metal organic chemical vapor deposition without an additional oxygen source. The atomic concentration of Al and O in the deposited $AlO_x$ film was measured to be Al:O = ~1:1.1 and any serious interfacial oxide layer between the film and Si substrate was not observed. Gaseous by-products monitored by quadruple mass spectrometry show that ${\beta}$-hydrogen elimination mechanism is mainly contributed to the $AlO_x$ CVD process of DMAI precursor. The current-voltage characteristics of the $AlO_x$ film in Au/$AlO_x$/Ir metalinsulator-metal (MIM) capacitor structure show high ON/OFF ratio larger than ${\sim}10^6$ with SET and RESET voltages of 2.7 and 0.8 V, respectively. Impedance spectra indicate that the switching and memory phenomena are based on the bulk-based origins, presumably the formation and rupture of filaments.

Preparation of Al2O3 Thin Films by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide and Water and Their Reaction Mechanisms

  • An, Ki-Seok;Cho, Won-Tae;Sung, Ki-Whan;Lee, Sun-Sook;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1659-1663
    • /
    • 2003
  • $Al_2O_3$ thin films were grown on H-terminated Si(001) substrates using dimethylaluminum isopropoxide [DMAl: $(CH_3)_2AlOCH(CH_3)_2$], as a new Al precursor, and water by atomic layer deposition (ALD). The selflimiting ALD process by alternate surface reactions of DMAI and $H_2O$ was confirmed from measured thicknesses of the aluminum oxide films as functions of the DMAI pulse time and the number of DMAI-$H_2O$ cycles. Under optimal reaction conditions, a growth rate of ~1.06 ${\AA}$ per ALD cycle was achieved at the substrate temperature of $150\;^{\circ}C$. From a mass spectrometric study of the DMAI-$D_2O$ ALD process, it was determined that the overall binary reaction for the deposition of $Al_2O_3\;[2\;(CH_3)_2AlOCH(CH_3)_2\;+\;3\;H_2O\;{\rightarrow}\;Al_2O_3\;+\;4\;CH_4\;+\;2\;HOCH(CH_3)_2]$can be separated into the following two half-reactions: where the asterisks designate the surface species. Growth of stoichiometric $Al_2O_3$ thin films with carbon incorporation less than 1.5 atomic % was confirmed by depth profiling Auger electron spectroscopy. Atomic force microscopy images show atomically flat and uniform surfaces. X-ray photoelectron spectroscopy and cross-sectional high resolution transmission electron microscopy of an $Al_2O_3$ film indicate that there is no distinguishable interfacial Si oxide layer except that a very thin layer of aluminum silicate may have been formed between the $Al_2O_3$ film and the Si substrate. C-V measurements of an $Al_2O_3$ film showed capacitance values comparable to previously reported values.