DOI QR코드

DOI QR Code

Correlation of the Rates of Solvolyses of Cinnamyl Bromide

  • Koo, In-Sun (Department of Chemical Education and The Research Institute of Natural Science,Gyeongsang National University) ;
  • Cho, Jun-Mi (Department of Chemical Education and The Research Institute of Natural Science,Gyeongsang National University) ;
  • An, Sun-Kyoung (Department of Chemical Education and The Research Institute of Natural Science,Gyeongsang National University) ;
  • Yang, Ki-Yull (Department of Chemical Education and The Research Institute of Natural Science,Gyeongsang National University) ;
  • Lee, Jong-Pal (Department of Chemistry, Dong-A University) ;
  • Lee, I. (Department of Chemistry, Inha Univer)
  • Published : 2003.04.20

Abstract

Solvolytic rate constants at 25℃ are reported for solvolyses of cinnamyl bromide (1) in binary mixtures of water with acetone, ethanol, methanol, methanol-d, and 2,2,2-trifluoroethanol. Product selectivities are reported for solvolyses of 1 in aqueous ethanol and methanol. Rate ratios in solvents of the same $Y_{Br}$ value and different nucleophilicity provide measures of the minimum extent of nucleophilic solvent assistance (e.g. $[k_{40EW}/k_{97TFE}]$Y = 2.88, EW = ethanol-water). With use of the extended Grunwald-Winstein equation, the l and m values are similar to the values of 0.43 and 0.88 obtained for the solvolyses of 1 using the equation (see below) which includes a parameter (I) for solvation of aromatic rings. The magnitude of l and m values associated with a change of solvent composition predicts the $S_{N1}$ reaction mechanism rather than an $S_{N2}$ channel. Product selectivities (S), defined by S = [ether product]/[alcohol product]×[water]/[alcohol solvent] are related to four rate constants for reactions involving one molecule of solvent as nucleophile and another molecule of solvent as general base catalyst. A linear relationship between 1/S and molar ratio of solvent is derived theoretically and validated experimentally for solvolyses of the above substrates from water up 75% 1/S = $(k_{wa}/k_{aw})$([alcohol solvent]/[water]) + $k_{ww}/k_{aw}$ alcohol-water. The results are best explained by product formation from a “free” carbocation intermediate rather than from a solvent-separated ion pair.

Keywords

References

  1. Koo, I. S.; Bentley, T. W.; Kang, D. H.; Lee, I. J. Chem. Soc. Perkin Trans. 2 1991, 175-179.
  2. Bentley, T. W.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1989,1385-1392.
  3. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741-5747. https://doi.org/10.1021/ja00385a031
  4. Bentley, T. W.; Harris, H. C.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1988, 783-789.
  5. Bentley, T. W.; Harris, H. C. J. Chem. Soc. Perkin Trans. 2 1986,619-624.
  6. Koo, I. S.; An, S. K.; Yang, K.; Koh, H. J.; Choi, M. H.; Lee, I. Bull. Korean Chem. Soc. 2001, 22, 842-846.
  7. Bentley, T. W.; Bowen, C. T.; Morten, D. H.; Schleyer, PvR. J. Am. Chem. Soc. 1981, 103, 5466-5475. https://doi.org/10.1021/ja00408a031
  8. Winstein, S.; Grunwald, E. J. Am. Chem. Soc. 1948, 70, 846-854. https://doi.org/10.1021/ja01182a117
  9. Bentley, T. W.; Dau-Schmidt, J. P.; Llewellyn, G.; Mayr, H. J. Org. Chem. 1992, 57, 2387-2392. https://doi.org/10.1021/jo00034a035
  10. Winstein, S.; Fainberg, A.; Grunwald, E. J. Am. Chem. Soc. 1957,79, 4146-4155. https://doi.org/10.1021/ja01572a046
  11. Fainberg, A. H.; Winstein, S. J. Am. Chem. Soc. 1957, 79, 1957-1608.
  12. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951,73, 2700-2707. https://doi.org/10.1021/ja01150a078
  13. Kevill, D. N.; Ismail, N. HJ; D'Souza, M. J. J. Org. Chem. 1994,59, 6303-6312. https://doi.org/10.1021/jo00100a036
  14. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc. Perkin Trans. 2 1995,973-980.
  15. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc. Perkin Trans. 2 1997,257-263.
  16. Kevill, D. N.; Bond, M. W.; D'Souza, M. J. J. Org. Chem. 1997,62, 7869-7871. https://doi.org/10.1021/jo970657b
  17. Harris, J. M.; Clark, D. C.; Becker, A.; Fagan, J. F. J. Am.Chem. Soc. 1974, 96, 4478-4484 https://doi.org/10.1021/ja00821a021
  18. Harris, J. M.; Becker, A.; Fagan, J. F.; Walden, F. A. J. Am. Chem. Soc. 1974, 96, 4484-4489. https://doi.org/10.1021/ja00821a022
  19. Karton, Y.; Pross, A. J. Chem. Soc. Perkin Trans. 2 1977,1860-1863
  20. McLennan, D. J.; Martin, P. L. J. Chem. Soc.Perkin Trans. 2 1982, 1099-1105.
  21. Bentley, T. W.; Ryu, Z. H. J. Chem. Soc. Perkin Trans. 2 1994,761-767
  22. Koo, I. S.; Yang, K.; Kang, K.; Lee, I.; Bentley, T. W. J. Chem. Soc. Perkin Trans. 2 1998, 1179-1183.
  23. Song, B. D.; Jencks, Y. P. J. Am. Chem. Soc. 1989, 111, 8470-8479. https://doi.org/10.1021/ja00204a021
  24. Bentley, T. W.; Jones, R. O. J. Chem. Soc. Perkin Trans. 2 1993, 2351-2357
  25. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1994, 753-759
  26. Jones, R. O. M. Phil. Thesis; University of Wales: 1991.
  27. Koo, I. S.; Yang, K.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 968-973.
  28. Bentley, T. W.; Koo, I. S.; Norman, S. J. Org. Chem. 1991, 56, 1604.-1609 https://doi.org/10.1021/jo00004a048
  29. Koo, I. S.; An, S. K.; Yang, K.; Lee, I.; Bentley, T. W. J. Phy. Org. Chem. 2002, 15, 758-764. https://doi.org/10.1002/poc.550
  30. Liu, K. T.; Duann, Y. F.; Hou, S. H. J. Chem. Soc. Perkin Trans. 21998, 2181-2185.
  31. Oh, J.; Yang, K.; Koo, I. S.; Lee, I. J. Chem. Res. 1993, 310-311.
  32. Bentley, T. W.; Harris, H. C. J. Org. Chem. 1988, 53, 724-728. https://doi.org/10.1021/jo00239a004
  33. Gold, V.; Grist, S. J. Chem. Soc. B 1971, 2285-2286. https://doi.org/10.1039/j29710002285
  34. Bentley, T. W.; Llewllyn, G..; Ryu, Z. H. J. Org. Chem. 1998, 63, 4654-4659. https://doi.org/10.1021/jo980109d
  35. Koo, I. S.; Yang, K.; Kang, D. H.; Park, H. J.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 577-580.
  36. Koh, H. J.; Lee, H. C.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc.1996, 17, 712-715.
  37. Bentley, T. W.; Ebdon, D.; Llewellyn, G..; Abduljaber, M. H.; Miller, B.; Kevill, D. N. J. Chem. Dalton Trans. 1997, 3819-3825.
  38. Ta-Shma, R.; Rapport, Z. Adv. Phys. Org. Chem. 1992, 27, 239.
  39. Yang, K.; Koo, I. S.; Lee, I.; Jo, D.-S. Bull. Korean Chem. Soc.1994, 15, 280-284.

Cited by

  1. On the Importance of the Aromatic Ring Parameter in Studies of the Solvolyses of Cinnamyl and Cinnamoyl Halides vol.2010, pp.2090-2018, 2010, https://doi.org/10.1155/2010/130506
  2. How Fast Do R&n.bond;X Bonds Ionize? A Semiquantitative Approach vol.12, pp.6, 2003, https://doi.org/10.1002/chem.200500847
  3. Ion-Pair Formation of [CoIII(pn)2(Cl)(L)2+····· I−] by Aqueous-Organic Solvent Medium Enhanced Photoreduction: A Perspective Regression Analysis vol.32, pp.6, 2003, https://doi.org/10.14233/ajchem.2020.22598