DOI QR코드

DOI QR Code

Physicochemical Properties of Phosphatidylcholine (PC) Monolayers with Different Alkyl Chains, at the Air/Water Interface

  • Published : 2003.03.20

Abstract

Physicochemical properties of a series of PC monolayers with different alkyl chains (C24, C20, C16, and C8), at the air/water interface were investigated. The surface pressure is influenced mainly by the hydrophobicity of the PCs, which is confirmed by the curve shape and the on-set value of π-A isotherms at the air/water interface by increasing the number of alkyl chain. The on-set values of surface pressure were 125 Ų/molecule for DOPC(C8), 87 Ų/molecule for DPPC(C16), 75 Ų/molecule for DAPC(C20), and 55 Ų/molecule for DLPC(C24), respectively. The orientations of alkyl chains at the air/water interface are closely connected with the rigidity of the monolayers, and it was confirmed by the tendency of monolayer thickness in ellipsometry data. The temperature dependence of a series of PCs shows that the surface pressure decreases by increasing temperature, because the longer the alkyl chain length, the larger the hydrophobic interaction in surface pressure. The temperature effects and the conformational changes of unsaturated and saturated PCs were confirmed by the computer simulation study of the cis-trans transition with POPC and DPPC(C16). The cistrans conformational energy difference of POPC is 62.06 kcal/mol and that of DPPC(C16) is 6.75 kcal/mol. Due to the high conformational energy barrier of POPC, phase transition of POPC is limited in comparison with DPPC(C16).

Keywords

References

  1. Weideman, G.; Vollhardt, D. Thin Solid Films 1995, 264, 94. https://doi.org/10.1016/0040-6090(95)06613-6
  2. Van Brunt, J. Biotechnology 1985, 3, 209. https://doi.org/10.1038/nbt0385-209
  3. Haddon, R. C.; Lamola, A. A. Proc. Nt. Acda. Sci. USA 1985, 82, 1874. https://doi.org/10.1073/pnas.82.7.1874
  4. Phillips, M. C.; Chapman, D. Biochim, Biophys. Acta 1968, 23, 301.
  5. Colacicco, G. J. Colloid Interface Sci. 1968, 29, 345.
  6. Colacicco, G.; Ann, N. Y. Acad. Sci. 1972, 195, 224. https://doi.org/10.1111/j.1749-6632.1972.tb54803.x
  7. Colacicco, G.; Buckelew, Ar. Jr.; Scarpello, E. W. J. Colloid.Interface. Sci. 1974, 46, 147. https://doi.org/10.1016/0021-9797(74)90035-6
  8. Losche, M.; Helm, C.; Matles, H. D.; Mohwald, H. Thin SolidFilms 1985, 133, 51. https://doi.org/10.1016/0040-6090(85)90424-9
  9. Okamura, E.; Umemura, J.; Takenaka, T. Biochim. Biophys. Acta.1985, 812, 139. https://doi.org/10.1016/0005-2736(85)90531-0
  10. Tchorelof, D.; Gulik, A.; Denizot, B.; Puisieux, F. Chem. Phys.Lipids. 1991, 109, 151.
  11. Hifeda, Y. F.; Rayfield, G. W. Langmuir 1992, 82, 197.
  12. Jyoti, A.; Prokop, R. M.; Neumann, A. W. Colloids Surfaces B:Biointerfaces 1997, 8, 115. https://doi.org/10.1016/S0927-7765(96)01321-5
  13. Kim, H. J.; Yoo, J. S.; Kim, M. S. Bull. Korean Chem. Soc. 1997,18, 874.
  14. Balazs, D. E.; Schimit, P. L.; Szuhaj, B. F. J. Am. Oil Chem. Soc.1996, 193, 73.
  15. Meulenaer, B. D.; Meeren, P. V.; Vanderdeelen, J.; Baert, L. J. AmOil Chem. Soc. 1995, 1973, 72.
  16. Tausk, R. J. M.; Karmiggelt, J.; Oudshoorn, C. Biophys. Chem.1974, 1, 175. https://doi.org/10.1016/0301-4622(74)80004-9
  17. De Hass, G. H.; Bonsen, P. P. M.; Pieterson, W. A. Biochim.Biophys. Acta 1971, 239, 252. https://doi.org/10.1016/0005-2760(71)90171-8
  18. Mason, C. D.; Rand, T. G.; Anthes, M. Toxicology and AppliedPharmacology 2001, 172, 21. https://doi.org/10.1006/taap.2001.9127
  19. Avery, M. E.; Mead, J. J. Dis. Child. 1959, 51, 517.
  20. Nag, K.; Perez-Gil, J.; Crz, A.; Rich, N. H. Biophys. J. 1996, 71,1356. https://doi.org/10.1016/S0006-3495(96)79338-4
  21. Thomas, J. K. ACS Monograph NO 181; American ChemicalSociety: Washington, DC, 1884.
  22. Kalyanasundaran, K.; Thomas, J. K. J. Am. Chem. Soc. 1977, 99,2039. https://doi.org/10.1021/ja00449a004
  23. Gaines, G. L. Insoluble Monolayers Liquid-Gas Interfaces;Interscience: New York, 1966.
  24. Feller, S. E.; Venable, R. M.; Pastor, R. W. Langmuir 1997, 13,6555. https://doi.org/10.1021/la970746j
  25. Feller, S. E.; Yin, D.; Pastor, R. W.; Mackerell, Jr., A. D. Biophys. J. 1997, 73, 2269. https://doi.org/10.1016/S0006-3495(97)78259-6

Cited by

  1. An AFM study of solid-phase bilayers of unsaturated PC lipids and the lateral distribution of the transmembrane model peptide WALP23 in these bilayers vol.40, pp.7, 2011, https://doi.org/10.1007/s00249-011-0696-1
  2. β-Cyclodextrin-Mediated Removal of Soy Phospholipids from the Air–Water Interface vol.88, pp.2, 2011, https://doi.org/10.1007/s11746-010-1664-0
  3. Effects of Sodium Salts of Lyotropic Anions on Low-Temperature, Ordered Lipid Monolayers vol.116, pp.50, 2012, https://doi.org/10.1021/jp307004e
  4. vol.14, pp.6, 2013, https://doi.org/10.1021/bm400356m
  5. Interactions of Alkylphosphocholines with Model Membranes—The Langmuir Monolayer Study vol.246, pp.6, 2013, https://doi.org/10.1007/s00232-013-9557-4
  6. Water and Membrane Dynamics in Suspensions of Lipid Vesicles Functionalized with Poly(ethylene glycol)s vol.118, pp.23, 2014, https://doi.org/10.1021/jp410894x
  7. Affinity of Alkylphosphocholines to Biological Membrane of Prostate Cancer: Studies in Natural and Model Systems vol.247, pp.7, 2014, https://doi.org/10.1007/s00232-014-9674-8
  8. Differential Interactions of Gelatin Nanoparticles with the Major Lipids of Model Lung Surfactant: Changes in the Lateral Membrane Organization vol.119, pp.17, 2015, https://doi.org/10.1021/jp5122239
  9. Biomimetic Monolayer Films of Monogalactosyldiacylglycerol Incorporating Plastoquinone vol.119, pp.20, 2015, https://doi.org/10.1021/acs.jpcb.5b02196
  10. Cyclosporin A in Membrane Lipids Environment: Implications for Antimalarial Activity of the Drug—The Langmuir Monolayer Studies vol.248, pp.6, 2015, https://doi.org/10.1007/s00232-015-9814-9
  11. Monogalactosyldiacylglycerol and digalactosyldiacylglycerol role, physical states, applications and biomimetic monolayer films vol.39, pp.3, 2016, https://doi.org/10.1140/epje/i2016-16039-0
  12. Collapsed States of Langmuir Monolayers vol.65, pp.5, 2016, https://doi.org/10.5650/jos.ess15261
  13. Investigations of the influence of liposome composition on vesicle stability and drug transfer in human plasma: a transfer study pp.1532-2394, 2016, https://doi.org/10.1080/08982104.2016.1247101
  14. Oxysterols Versus Cholesterol in Model Neuronal Membrane. I. The Case of 7-Ketocholesterol. The Langmuir Monolayer Study vol.250, pp.5, 2017, https://doi.org/10.1007/s00232-017-9984-8
  15. Dynamic Behaviors and Morphology Change of Anionic Phospholipid DPPG Monolayer Caused by Bovine Serum Albumin at Air-Water Interface vol.30, pp.5, 2017, https://doi.org/10.1063/1674-0068/30/cjcp1703029
  16. Calcein Leakage Behavior from Vesicles Induced by Protein–Vesicle Interaction: A Study by Surface Pressure–Area Isotherms vol.46, pp.7, 2017, https://doi.org/10.1246/cl.170119
  17. NMR shielding and a thermodynamic study of the effect of environmental exposure to petrochemical solvent on DPPC, an important component of lung surfactant vol.81, pp.12, 2007, https://doi.org/10.1134/S0036024407120096
  18. Highly Responsive Fluorescent Assemblies Allow for Unique, Multiparametric Sensing of the Phospholipid Membrane Environment vol.25, pp.6, 2018, https://doi.org/10.1002/chem.201803627
  19. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  20. Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC vol.94, pp.8, 2003, https://doi.org/10.1529/biophysj.107.114215
  21. Influence of environmental conditions on the interfacial organisation of fengycin, a bioactive lipopeptide produced by Bacillus subtilis vol.329, pp.2, 2003, https://doi.org/10.1016/j.jcis.2008.10.017
  22. Formulation, characterisation andin vivoevaluation of lipid-based nanocarrier for topical delivery of diflunisal vol.33, pp.5, 2003, https://doi.org/10.1080/02652048.2016.1216189
  23. Phospholipid adsorption at oil in water versus water in oil interfaces: Implications for interfacial densities and bulk solubilities vol.505, pp.None, 2003, https://doi.org/10.1016/j.colsurfa.2015.12.024
  24. In vitro characterization and in vivo comparison of the pulmonary outcomes of Poractant alfa and Calsurf in ventilated preterm rabbits vol.15, pp.3, 2003, https://doi.org/10.1371/journal.pone.0230229
  25. Development and Optimization of Itraconazole-Loaded Solid Lipid Nanoparticles for Topical Administration Using High Shear Homogenization Process by Design of Experiments: In Vitro, Ex Vivo and In Vivo vol.22, pp.7, 2003, https://doi.org/10.1208/s12249-021-02118-3