DOI QR코드

DOI QR Code

Development of a Liquid-Phase Methanol Synthesis Process for Coal-derived Syngas

석탄가스 전환용 액상 메탄올 합성 공정 개발

  • Published : 2002.12.31

Abstract

Liquid-phase methanol synthesis via methyl formate using coal-derived syngas was carried out in a bench-scale(diameter 173 mm and dispersion height 1200 mm) slurry bubble column reactor(SBCR) Under the condition of $180^{\circ}$. 61 atm, 30 L/min, $H_{2}$/CO=2 and a slurry mixture of 2 kg of copper chromite and 0.5 kg of $KOCH_{3}$ suspended in 14 L of methanol, the per pass conversions of syngas is 6 %, maximum concentration of methyl formate 3.088 mol% and maximum synthesis, rate of methanol 0.8 gmole/kg ${\cdot}$ hr. It is a significant evidence that copper chromite powder as heterogeneous catalyst didn't active for the hydrogenolysis of methyl formate to methanol, resulting copper chromite powder was not efficiently suspended in a slurry mixture. To enhance the hydrogenolysis of methyl formate in liquid-phase methanol synthesis process, the designed SBCR have need to use the higher specific gravity solvent and/or decrease the catalyst particle size.

Keywords

References

  1. I. Wender, FueI Processing Technology, 48, 189 (1996) https://doi.org/10.1016/S0378-3820(96)01048-X
  2. R. B. Anderson, 'The Fischer-Tropsch Synthesis', Academic Press, New York (1984)
  3. S. Lee, 'Methanol Synthesis Technology' CRC Press, Boca Raton, FL., 202 (1990)
  4. BASF Co., U. S. Patent 1,558,559 (1923)
  5. C. Lormand, Ind Eng. Chem, 17, 430 (1925) https://doi.org/10.1021/ie50184a034
  6. P. R. Davies, F. F. Snowden, G. W. Bridger, D. O. Hughes, and D. W. Young, U.S. Patent 1,010,871 (1966)
  7. R. G. Herman, in 'New Trends in CO Activation', Chap. 7, p. 265, Elsevier (1991)
  8. E. Supp, 'How to Produce Methanol from Coal', Springer-VerIag, Berlin (1990)
  9. J. L. Li and T. Inui, Appl. Cdtal. A:General, 133, 87 (1996)
  10. J. Nunan, K, Klier, C. W. Young, P. B. Himmnelarb, and R. G. Herman, J. Chem. Soc. Commun., 193 (1986)
  11. J. L. Li, T. Takeguchi and T. Inui, AppI. Catal. A: General, 139, 97 (1996) https://doi.org/10.1016/0926-860X(96)00022-1
  12. J. S. Lee, K. L. Moon, S. H. Lee, S. Y Lee, and Y. G. Kim, CataI. Lett, 34, 93 (1995) https://doi.org/10.1007/BF00808326
  13. M. S. Sherwin and M. E. Frank, Hydrocarbon Processing, 55, 122 (1976)
  14. G. W. Roberts, D. M. Brown, T. H. Hsiung, and J. J. Lewnard, Chem. Eng. Sci., 45, 2713 (1990) https://doi.org/10.1016/0009-2509(90)80162-8
  15. D. M. Brown, 'Modelling of Methanol Synthesis in the Liquid Phase,' Institution of Chemical Engineers Symposium Series (ISCRE 8), Pergamon Press, 87, 699 (1984)
  16. G. W. Roberts, D. M. Brown, T. H. Hsiung, and J. J. Lewnard, Ind Eng. Chem. Res., 32, 1610 (1993) https://doi.org/10.1021/ie00020a012
  17. ChemicaI Week, October 25, 41 (1995)
  18. R. Sapienza, W. Sleigeir, T. O'Hare, and D. Mahajan, U. S. Patent 4,619,946 (1986)
  19. Z, Liu, J, W. Tiemey, Y. T. Shah, and I. Wender, FueI Processing TechnoI., 23, 149 (1989) https://doi.org/10.1016/0378-3820(89)90074-X
  20. Z. Liu, J, W. Tierney, Y. T. Shah, and I. Wgnder, FueI Processing Technol., 18, 185 (1988) https://doi.org/10.1016/0378-3820(88)90095-1
  21. Y. G. Kim, J. S. Lee, J. C. Kim, S. H. Lee, and K. M. Kim, HWAHAK KONGHAK, 27, 396 (1989)
  22. K. M. Kim, J. C. Kim, M. S. Cheong, J. S. Lee, and Y. G. Kim, Korean J. Chem. Eng., 7, 259 (1990) https://doi.org/10.1007/BF02707178
  23. S. J. Choi, J. S. Lee, and Y. G. Kim, HWAHAK KONGHAK. 32, 317 (1994)
  24. J. S. Shin, H. Jung, and J. D. Lee, HWAHAK KONGHAK, 39, 150 (2001)
  25. J. S. Shin, H. Jung, and J. D. Lee,,HWAHAK KONGHAK, 39, 272 (2001)