Browse > Article
http://dx.doi.org/10.12925/jkocs.2002.19.4.1

Development of a Liquid-Phase Methanol Synthesis Process for Coal-derived Syngas  

Shin, Jang-Sik (School of Chem. Eng. Chungbuk National University)
Jung, Heon (Korea Institute of Energy Research)
Lee, Jong-Dae (School of Chem. Eng. Chungbuk National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.19, no.4, 2002 , pp. 251-257 More about this Journal
Abstract
Liquid-phase methanol synthesis via methyl formate using coal-derived syngas was carried out in a bench-scale(diameter 173 mm and dispersion height 1200 mm) slurry bubble column reactor(SBCR) Under the condition of $180^{\circ}$. 61 atm, 30 L/min, $H_{2}$/CO=2 and a slurry mixture of 2 kg of copper chromite and 0.5 kg of $KOCH_{3}$ suspended in 14 L of methanol, the per pass conversions of syngas is 6 %, maximum concentration of methyl formate 3.088 mol% and maximum synthesis, rate of methanol 0.8 gmole/kg ${\cdot}$ hr. It is a significant evidence that copper chromite powder as heterogeneous catalyst didn't active for the hydrogenolysis of methyl formate to methanol, resulting copper chromite powder was not efficiently suspended in a slurry mixture. To enhance the hydrogenolysis of methyl formate in liquid-phase methanol synthesis process, the designed SBCR have need to use the higher specific gravity solvent and/or decrease the catalyst particle size.
Keywords
liquid-phase methanol synthesis; methyl formate; SBCR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Lormand, Ind Eng. Chem, 17, 430 (1925)   DOI
2 J. L. Li and T. Inui, Appl. Cdtal. A:General, 133, 87 (1996)
3 J. Nunan, K, Klier, C. W. Young, P. B. Himmnelarb, and R. G. Herman, J. Chem. Soc. Commun., 193 (1986)
4 J. S. Lee, K. L. Moon, S. H. Lee, S. Y Lee, and Y. G. Kim, CataI. Lett, 34, 93 (1995)   DOI   ScienceOn
5 G. W. Roberts, D. M. Brown, T. H. Hsiung, and J. J. Lewnard, Ind Eng. Chem. Res., 32, 1610 (1993)   DOI   ScienceOn
6 ChemicaI Week, October 25, 41 (1995)
7 K. M. Kim, J. C. Kim, M. S. Cheong, J. S. Lee, and Y. G. Kim, Korean J. Chem. Eng., 7, 259 (1990)   DOI
8 J. S. Shin, H. Jung, and J. D. Lee, HWAHAK KONGHAK, 39, 150 (2001)
9 R. G. Herman, in 'New Trends in CO Activation', Chap. 7, p. 265, Elsevier (1991)
10 BASF Co., U. S. Patent 1,558,559 (1923)
11 Y. G. Kim, J. S. Lee, J. C. Kim, S. H. Lee, and K. M. Kim, HWAHAK KONGHAK, 27, 396 (1989)
12 Z, Liu, J, W. Tiemey, Y. T. Shah, and I. Wender, FueI Processing TechnoI., 23, 149 (1989)   DOI   ScienceOn
13 D. M. Brown, 'Modelling of Methanol Synthesis in the Liquid Phase,' Institution of Chemical Engineers Symposium Series (ISCRE 8), Pergamon Press, 87, 699 (1984)
14 Z. Liu, J, W. Tierney, Y. T. Shah, and I. Wgnder, FueI Processing Technol., 18, 185 (1988)   DOI   ScienceOn
15 P. R. Davies, F. F. Snowden, G. W. Bridger, D. O. Hughes, and D. W. Young, U.S. Patent 1,010,871 (1966)
16 E. Supp, 'How to Produce Methanol from Coal', Springer-VerIag, Berlin (1990)
17 G. W. Roberts, D. M. Brown, T. H. Hsiung, and J. J. Lewnard, Chem. Eng. Sci., 45, 2713 (1990)   DOI   ScienceOn
18 S. Lee, 'Methanol Synthesis Technology' CRC Press, Boca Raton, FL., 202 (1990)
19 J. L. Li, T. Takeguchi and T. Inui, AppI. Catal. A: General, 139, 97 (1996)   DOI
20 I. Wender, FueI Processing Technology, 48, 189 (1996)   DOI   ScienceOn
21 R. Sapienza, W. Sleigeir, T. O'Hare, and D. Mahajan, U. S. Patent 4,619,946 (1986)
22 M. S. Sherwin and M. E. Frank, Hydrocarbon Processing, 55, 122 (1976)
23 J. S. Shin, H. Jung, and J. D. Lee,,HWAHAK KONGHAK, 39, 272 (2001)
24 R. B. Anderson, 'The Fischer-Tropsch Synthesis', Academic Press, New York (1984)
25 S. J. Choi, J. S. Lee, and Y. G. Kim, HWAHAK KONGHAK. 32, 317 (1994)