Enterobacter intermedium 60- 2G의 유기산 생성과 불용성인의 가용화

Organic acid production and phosphate solubilization by Enterobacter intermedium 60-2G

  • 김길용 (전남대학교 농과대학 응용생물공학부) ;
  • 황보훈 (전남대학교 농과대학 응용생물공학부) ;
  • 김용웅 (전남대학교 농과대학 응용생물공학부) ;
  • 김효정 (전남대학교 농과대학 응용식물학부) ;
  • 박근형 (전남대학교 농과대학 응용생물공학부) ;
  • 김영철 (전남대학교 농과대학 응용식물학부) ;
  • 성기영 (전남대학교 농과대학 응용식물학부)
  • Kim, Kil-Yong (Division of Applied Bioscience and Biotechnology, College of Agriculture, Chonnam National University) ;
  • Hwangbo, Hoon (Division of Applied Bioscience and Biotechnology, College of Agriculture, Chonnam National University) ;
  • Kim, Yong-Woong (Division of Applied Bioscience and Biotechnology, College of Agriculture, Chonnam National University) ;
  • Kim, Hyo-Jeong (Division of Applied Plant Science, Institute of Biotechnology, College of Agriculture, Chonnam National University) ;
  • Park, Keun-Hyung (Division of Applied Bioscience and Biotechnology, College of Agriculture, Chonnam National University) ;
  • Kim, Young-Cheol (Division of Applied Plant Science, Institute of Biotechnology, College of Agriculture, Chonnam National University) ;
  • Seong, Ki-Young (Division of Applied Plant Science, Institute of Biotechnology, College of Agriculture, Chonnam National University)
  • 투고 : 2002.02.09
  • 심사 : 2001.12.06
  • 발행 : 2002.02.28

초록

강한 인산 가용력을 가진 인산 용해 세균인 균주 60-2G를 잔디의 근권에서 분리하였다. GC-FAME구조와 탄소이용형태 및 16S rRNA의 부분 염기서열 분석을 통해 균주 60-2G는 Enterobacter intermedium으로 동정되었다. Hydroxyapatite를 첨가한 배지와 생장 시킨 균주 60-2G는 gluconic acid 와 2-ketogluconic acid 및 소량의 lactic acid를 생성하였다. 균주 60-2G의 생장 기간동안 배지의 pH는 3.8 까지 낮아지는 반면에 배지의 유효 인산 농도는 증가하였다. 배지의 낮은 pH와 유효인산농도의 증가는 역 상관관계이며, 이는 균주 60-2G가 생성하는 유기산에 의한 영향이다. E. intermedium 60-2G 균주는 유기산 생성에 관여하는 glucose dehydrogenase의 co-factor인 PQQ를 생성하였으며, pqq의 부분 염기서열 분석 결과 기존에 보고된 서열과 85% 이상의 상동성을 가지고 있었다.

A phosphate solubilizing bacterium. strain 60-2G, possessing a strong ability to solubilize insoluble phosphate was isolated from the rhizosphere of grass. On the basis of GC-FAME profile, carbon utilization pattern, and the DNA sequence of a conserved partial 16S rRNA gene, the 60-2G was identified as Enterobacter intermedium. The analysis by HPLC revealed that the strain 60-2G produced mainly gluconic and 2-ketogluconic acids with small amounts of lactic acid in broth culture medium containing hydroxyapatite. During the incubation period of the strain 60-2G in broth culture, pH of the medium decreased upto 3.8 while the soluble phosphate concentration increased. The reversed correlation between pH and soluble phosphate concentration indicated that the solubility of P was due to the produced organic acids. The sequence homology of the deduced amino acids suggested that E. intermedium 60-2G synthesized PQQ which is essential for the oxidation of glucose by glucose dehydrogenase.

키워드

참고문헌

  1. Babenko, Y. S., G. I.Iyiygtna, E. F. Grigorev, L. M. Dolgikh, and T. I. Borlsova, 1984. BlolotScal actjvlty and Physicai-biochemlcal propertles of phosphate-dissolvlng bacterla. (Engllsh translation). Mikcbiobiologtya, 53,533-539
  2. Bar-Yoself, R, R D. Rogeis, J. H. Wolfam, and E. Rlchman, 1999. Pseudomonos cepocia-medlated rock phosphate solubllizatlon In kaollnlte and montmorillonlte suspensions. Soil Sci. Soc. Am. J., 63,1703-1708 https://doi.org/10.2136/sssaj1999.6361703x
  3. Boiardi, J. L, M. L. Galar, and O. M. Neljssel, 1996. POO-linked extracellular glucose oxidatlon and chemotaxls towards this cofactor in rhlzobla. FEMS Micnobiol. Lett.,140, 179-184 https://doi.org/10.1111/j.1574-6968.1996.tb08333.x
  4. Brady, N. C. 1990. The Nature and Properties of Soas, 351-380 pp. Macmillan, New York
  5. El-Glbaly, M. H.. F. M. El-Reweiny, M. Abdel-Nasser, and TA. El-Dahtory, 1977. Studies on phosphate-solubllizing bacteria in soil and rhIzosphere of diSerent plants. II. Selection of the most eStclent phosphate-dlssolvers and their morphological groupIng. , 132, 240-244
  6. Goldstein, A. H. and S. T. Liu, 1987. Molecular doning and regulation of a mineral phosphate solubillzlng gene from Erwtnia herbtoola. Bto/Technol. 5, 72-74
  7. Illmer, P. and F. Schinner, 1992. Solubilization of lnoiganlc phosphates by microorganisms isolated from forest soils. Soil Biol. Biochem., 24, 389-395 https://doi.org/10.1016/0038-0717(92)90199-8
  8. Illmer, P., A. Baibato, and F. Schinner, 1995. Solublllzation of hardly-soluble A1PO4 with P-solubllizing mlcroorganism. Soil Biol. Biochem., 27, 265-270 https://doi.org/10.1016/0038-0717(94)00205-F
  9. Kim, K. Y., D. Jordan, and H. B. Krishnan, 1997. Rohnella oquailis, a bacterium isolated from soybean rhlzosphere, can solubillze hydroxyapatite. FEMS MIcmbioL Lett., 153,273-277 https://doi.org/10.1016/S0378-1097(97)00246-2
  10. Kim, K.Y., D. Jordan, and H. B. Krlshnan. 1998, Expression of genes from Rahnella oquatlis that are necessary for mineral phosphate solubillzatlon in Escherichia coli. FEMS Microbiol. Lett., 159,121-127 https://doi.org/10.1111/j.1574-6968.1998.tb12850.x
  11. Leyval, C. and J. Bertheln, 1989. Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: Influence on P, K, Mg, and Fe mobilization from mInerals and plant growth. , 117, 103-110 https://doi.org/10.1007/BF02206262
  12. Ulu, S. T., L. Y. Lee, C. Y. Tai, C. H. Hung, Y. S. Chang, J. H. Wolfram, R Rogers, and A H. Goldstein, 1992. ClonIng of an Erwinia herbIcola gene necessary for gluconlc acid production and enhanced mineral phosphate solubilizatlon in Escherichia coli HB 101: nucleotlde sequence and propable Involvement in biosynthesis of the coenzyme pyrroloqulnollne qulnone. J. Bacteriol., 174,5814-5819 https://doi.org/10.1128/jb.174.18.5814-5819.1992
  13. Meulenberg, J. J. M., E. SelUnk, N. H. Rlegman, and P. W. Postma, 1992. Nucleotide sequence and structure of the Klebsiella pneumonlae pqq operon. Mol. Gen. Genet, 232,284-294
  14. Moghimi, A. and M. E. Tate, 1978. Does 2-ketogluconate chelate calcium in the pH range 2.4 to 6.4 ? Soil Biol Biochem., 10,289-292 https://doi.org/10.1016/0038-0717(78)90024-X
  15. Moghimi, A., M. E. Tate, and J. M. Oades, 1978. Characterization of ihlzosphere products especially 2-ketogluconic add. SOBBiol. Biochem. 10, 283-287
  16. Olsen, S. R. and L. E. Sommers, 1982. Phosphorus, In : Method of soil analysis part 2, Chemlcal and mlcrobial properties, Eds A. L. Page, R H. Miller, and D. R. Keeney, pp. 403-430. Amerlcan Society of Agronomy, Madlson,Wisconsin
  17. Sampie, E. C., R J. Soper, and G. J. Racz, 1980. ReacUons of phosphate fertilizers tn soils, hi: Ihe role of phosphorus in agriculture, eds. F. E. Khasawneh, E.C. Sample, and E.J. Kamprath, pp. 263-310. Amerlcan Soclety of Agronomy, Madfson, Wisconsin (1980)
  18. Spaber, J. I. 1957. Solution of mineral phosphates by soil bacteria. Nature, 180,994-995 https://doi.org/10.1038/180994a0
  19. Svltel, J. J. and E. Sturdlk, 1995. 2-ketog1ucon1c acid production by Acetobacter pasteurianus. AppL Blochaem. Biotech., 53, 53-63 https://doi.org/10.1007/BF02783481
  20. Van Schle, B. J., O. H. De Moot, J. D. Linton, J. P. Van Dljken, and J. G. Kuenen, 1987. PQQ-dependent production of gluconlc acid by Acinetobacter, Agrobacterium and Rhizobium species. J. Gen. Microbiol,133,867-875
  21. Young, J. P. W., H. L. Downer, and B. D. Eardly, 1991. Phylogeny of the phototroplc Rhlzoblum strain BTAll by polymerase chain reaction-based sequencing of 16S rRNA gene segment J. Bacteriol., 7, 2271-2277