시설재배지에서 윤답전환체계가 인산분포에 미치는 영향

Characteristics of Phosphorus Accumulation in Rotation System of Plastic Film House and Paddy Soils

  • Lee, Yong-Bok (Dept. Agricultural Chemistry, College of Agriculture, Gyeongsang National University) ;
  • Lee, In-Bog (Dept. Hort. Environ., National Hort. Research Institute, RDA) ;
  • Hwang, Jun-Young (Korea Science and Engineering Foundation) ;
  • Lee, Kyung-Dong (Dept. Agricultural Chemistry, College of Agriculture, Gyeongsang National University) ;
  • Kim, Pil-Joo (Dept. Agricultural Chemistry, College of Agriculture, Gyeongsang National University)
  • 투고 : 2002.02.14
  • 심사 : 2001.12.10
  • 발행 : 2002.02.28

초록

남부지방을 중심으로 많은 시설재배지가 염류집적의 문제를 해결하기 위해 윤답전환체계로 운영되고 있으나, 윤답전환체계가 토양의 이화학적 특성 및 인산의 집적에 미치는 영향에 대한 연구가 거의 없었다. 경남 진주지역 윤답전환체계 운영시설재배지(RS) 22곳의 토양을 깊이별로 채취하여 이화학적 특성 및 인산의 분포특성을 인근 비윤답전환 시설재배지(NRS) 토양과 비교하였다. RS 표층토(Ap)의 전기전도도(EC)는 NRS에 비해 약 평균 약 $1.0dS\;m^{-1}$ 정도가 낮았으나 30cm 이하의 심층부에서는 RS의 EC값이 NRS에 비해 높아졌다. 깊이가 깊어질수록 두 형태간 EC값의 차이는 증가하여 세척된 염분이 상당부분 심층부로 이동되고 있음을 확인할 수 있었다. 기대와 달리 표층토의 유기물 함량은 RS가 NRS에 비해 약 $3g\;kg^{-1}$이 높았으며 이는 두 형태가 년간 유기물 시용량 차이에 기인된 것으로 해석되었다. 깊이가 증가 할수록 유기물 농도는 EC분포와 동일한 경향을 보여 윤답전환 과정중 단소의 유기물이 심층부로 이동되고 있음을 추정할 수 있었다. 전인산(T-P) 함량은 RS의 표층토가 NRS에비해 약 $850mg\;kg^{-1}$ 낮았으며, 이러한 경향은 심토까지 계속되었다. T-P의 약 90% 이상은 Inorganic P의 형태이었으며, Organic P와 Residual P가 저은 비율로 분포하였다. Inorganic P는 T-P에서와 같이 RS가 NRS에 비해 낮은 농도로 분포하였으며 깊이가 증가함에 따라 큰 폭으로 감소하였다. 이에 반해 Organic-P는 30cm 이상의 표층토에서는 RS가 NRS에 비해 낮은 농도로 분포하였으나 30cm 이하의 심층토에서는 RS가 NRS에 비해 높은 농도로 분포하였다. 특히 RS에서 Organic P는 NRS에서와 달리 깊이가 깊어짐에 따라 점점 증가하여 윤답전환지에서 인산이 상당 부분 Organic P의 형태로 이행되고 있음을 알 수 있었다. 표층토내 Extractable P는 Al-P와 Ca-P가 가장높은 비율로 존재하였으며, Fe-P와 수용성 P(W-P)의 순의 낮은 비율로 분포하였다. Ca-P와 W-P는 전 토양깊이에서 RS가 NRS에 비해 낮았으나 Al-P는 두 형태간 큰 차이가 없었다. 이에 반해 Fe-P는 RS가 NRS에 비해 높은 농도로 분포하였으며 20~40cm 사이에 가장 높은 농도로 분포하여 논토양 조건에서 영향을 받은 것으로 판단되었다. 결과적으로 윤답전환에 의한 약간의 T-P의 감소는 주로 W-P, Ca-P와 Organic P 형태로 주로 이동되었던 것으로 간접 해석되나 그 양은 기대했던 것에 비해 미미한 수준인 것으로 나타났다.

Much of the plastic film house soils in the southern part of the Korean peninsula are managed using a upland-paddy rotation culture system (hereafter, RS) to prevent salt accumulation in soil. However, information on the effects of RS on soil properties and environmental conservation is limited. In order to determine the effects of RS on soil properties, 22 fields under RS and 20 fields under a non-rotation system (hereafter, NRS) in plastic film houses were selected in Chinju, in southern Korea, and the P distribution characteristics were investigated, including the chemical properties. The RS contributed to the removal of water-soluble salts in the surface layer and to the redistribution of organic matter evenly in the soil profile. In the AP horizon, available phosphorus levels were $1,611mg\;kg^{-1}$ in RS and $1,789mg\;kg^{-1}$ in NRS, which markedly exceeds the optimum range for plant cultivation. Total P was lower in RS (average $4,593mg\;kg^{-1}$) than in NRS (average $5,440mg\;kg^{-1}$) and this decrease was taken to be an effect of RS. Inorganic P was the predominant form of P in both systems, followed by organic P and residual P. A soil profile showed that total and inorganic P concentrations decreased with depth in both systems. However, organic P increased withdepth in RS, which was in contrast to that noted in NRS. The increase in organic P with depth in RS implied that organically rather than inorganically derived phosphate moved through the soil. The concentrations of water-soluble P, Ca-P and Al-P were higher in NRS than in RS soil profiles, but the Fe-P concentration was higher in RS than in NRS, which might be affected by the anaerobic conditions found in paddy soils. In both systems, the Al-P form of extractable P predominated in the surface layer, followed by Ca-P, Fe-P and water-soluble P. With increasing depth, the composition rate of Ca-P to extractable P decreased to less than 10% in the 60-70cm depth, as Fe-P dominated at this level. The content of water-soluble P, potentially the main source of eutrophication, was higher in NRS than in RS. These results indicated that the RS used in plastic film houses contributed to the removal of water-soluble salts but only slightly decreased the phosphate concentration.

키워드

참고문헌

  1. Allison, L. E. 1965. Organlc carbon, In Methods of Soil Analysis. Part II. Ed. C. A. Black. P. 1367-1376. Am. Soc. Agron. Inc. Publ, Madison, WI
  2. Bohn, H., McNeal, B. and O'Conner, G. 1979. Soil Chemistiy. pp. 255-256. A Wiley-Intersdence Publication. New York. Chlchester, Brisbane, Toronto
  3. Chang, S. C., and Jackson, M. L. 1957. Fractionation of soil phosphorus. 84:133-144 https://doi.org/10.1097/00010694-195708000-00005
  4. Dean, L. A 1949. Rxation of soil phosphorus. Adv. Agron. 1.391-411 https://doi.org/10.1016/S0065-2113(08)60754-3
  5. Egawa, T. 1985. Vertical distribution of phosphorus in soil layers derived from volcanic ash of different age. Bull. Fac. Agric. Meljl Untv. No. 70: 23-32 (in Japanese with English summary)
  6. Egawa, T., and Nonaka, M. 1980. Studies on soa organic phosphorus. 1) Organic phosphorus content in some Andosols. Bull. Fac. Agric., Meljl Untv., No. 52: 55-68 (in Japanese with Engllsh summary)
  7. Egawa, T. 1985. Vertical distribution of phosphorus in soil layers derived from volcanic ash of different age. Bull. Fac. Agric. Meiji Univ. No. 70: 23-32 (in Japanese with English summary)
  8. Frossard, E., Stewart, J. W. B. and Amaud R J. St 1989. Distribution and mobility of phosphorus in grassland and forest soils of Saskatchewan. Can. J. Soil Sci. 69: 401-416 https://doi.org/10.4141/cjss89-040
  9. Kim, P. J., Lee, D. K., and Chung, D. Y. 1997. Vertical distribution of bulk density and salts in a plastic film house soil. J. Korean Soc. Sci. Fert. 30: 226-233 (in Korean with English summaiy)
  10. Kim, P. J., Lee, S. M., Yoon, H. B., Park, Y. H., Lee, J. Y., Kim, S. C., and Choi, D. H. 2000. Characteristics of phosphorus accumulation in organic farming fields. J. Korean Soc. Sci Fert 30: 234-241
  11. Klm, P. J. 2001. Effects of compact layer on salt accumulation in plastic film house soils. Soll Sci. Plant Nutr. 47:67-77 https://doi.org/10.1080/00380768.2001.10408369
  12. Kim, P. J., Chung, D. Y., and Malo, D. 2001. Characteristics of phosphorus accumulation in soils under oiganic and conventional farming in plastic film houses in Korea. Soil Sci. Plant Nutr. 47: 281-289 https://doi.org/10.1080/00380768.2001.10408392
  13. Kim, S. C., and Yoo, S. H. 1991. The effect of submergence on phosphorus adsorption characteristics in soils. II. Phosphorus adsorption and fractions of inorganic phosphorus. J. Kor. Soc. Soil Sci. Fert 24(4): 248-253 (In Korean wlth English summary)
  14. MAF (Ministry of Agriculture and Forestry, Korea). 1981-1999. Statistical yearbook of agriculture and forestry. Republic of Korea
  15. Meek. B. D., Graham, L. E., and Donovan, T. J. 1982. Long-term effects of manure on soil nitrogen, phosphorus, potassium, sodium, organic matter, and water inSltration rate. Soil Sci Soc. Am. J. 46:1014-1019 https://doi.org/10.2136/sssaj1982.03615995004600050025x
  16. RDA (Rural Development Administration, Korea). 1988. Methods of Soil Chemical Analysis. Natlonal Instltute of Agricultural Science and Technology, RDA. Suwon (in Korean)
  17. RDA (Rural Development Administration, Korea). 1999. Fertilization standards to crop plants pp. 148. National Institute of Agricultural Science and Technology, RDA. Suwon (in Korean)
  18. Ryu, I. S., Shin, C. W., Yoon, J. H., and Yoo, S. H. 1977. A study on composition of inorganic phosphorus forms and comparison of methods of determining available phosphorus in upland soils. J. Kor. Soc. Soil Scl. Fert. 10(4): 211-217 (In Korean with Endlish summary)
  19. Schoenau, J. J. and Bettany, J. R 1987. Organic matter leachlng as a component of C, N, P, and S cycles in a forest, grassland and gleyed soil. Soil Sci Soc. Am. J. 51:646-651 https://doi.org/10.2136/sssaj1987.03615995005100030017x
  20. Sekiya, K. 1983. Phosphorus. In Methods of Soil Analysis (Dojou Youbu Bunsekihou). Ed. Min. Agric. Forest. Fish. p. 225-257. Youkendou, Tokyo (In Japanese)
  21. Shaipley, A. N. and'Smith S. J. 1989. Mineralization and leaching of phosphorus from soil incubated with Surface-applied and incorporated crop residue. J. Environ. Qual. 18: 101-105 https://doi.org/10.2134/jeq1989.00472425001800010018x
  22. Shin, C. W., Kim, J. J. and Yoon, J. H. 1988. Studies on the characteristics of phosphorus In the upland soil. I. Composition of accumulated phosphorus forms and available phosphorus. J. Kor. Soc. Soil Sci. Fert 21(2): 21-29 (1n Korean with English summary)
  23. Shin, C. W. 1989. Characteristics of phosphorus fractions and fertilizer use efficlency in upland soils. Ph.D. Ihesis. Kangwon National University (In Korean with English summary)
  24. Shin, C. W., Kim, J. J., and Ryu, I. S. 1990. Studies on the characteristics of phosphorus in the upland soil. IV. Distribution percentages of inorganic phosphorus on different levels of soil chemical properties. J. Korean Soc. Soil Sci. Fert. 23(1): 15-20 (In Korean with English summary)
  25. Tisdale, S. L, and Neison, W. L, and Beaton, J. D. 1985. Soil fertility and fertilizens (4th ed.). Macmillan Publ. Co., New York, USA. P. 754
  26. Vivekanandan, M., and Fixen, P. E. 1990. Effect of large manure applications on soil P Intensity. Commun. Soil Sci. Plant Anal. 21: 287-297 https://doi.org/10.1080/00103629009368231
  27. Watanabe, M., and Kato, N. 1983. Research on the behavior of applied phosphorus fertllzer in soil. 1) Fractlonation method of soil inonanic phosphorus compounds in soil. 2) Changes tn phosphorus compouncls in soil wtth time. Misc. Publ. Fertil. Res. Div., Nati. Inst Agric. Sci. Ser., No. 251:1-31 (In Japanese)
  28. White, W. C., and Collins, D. N. (ed). 1982. The fertilizer handbook. Ihe Fertilizer Inst, Washington D. C.
  29. Yoo, S. H., Jeong, Y. S. and Shin, Y. H. 1974. Deterioration of the physical and chemical properties of the vinyl house soils by continuous vegetabie cropping. J. Korean Soc. Sci. Fert 7(4): 227-234 (in Karean with English summary)
  30. Yoon, J. H., Hong, C. W., and Huh, B.L. 1982. Interrelationships among pH, pe, Fe++ and water soluble phosphate in reduced soil-water suspension. J. Kor. Soc. Soil Sci. Fert. 15(3): 162-165 (in Korean. with English summary)
  31. Yoon, J.H., Jung, B.G. and Kim, Y.H. 1993. Accumulation patterns of inorganic nutrients in the profile salt accumulated soil. Annual Report of NIAST. 170-171 (in Korean)
  32. Yuk, C. S., Kim, J. J. Hong, S. D. and Kang, B. G. 1993. Salt accumulation in horticultural soils of PE film house in Cbungbuk area. J. Korean Soc. Sci. Fert 26(3): 172-180 (in Korean with English summary)