ITS 영역의 염기서열을 이용한 근류형성 질소고정균의 계통분류

Phylogenetic analysis of the genera Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobum and Sinorhizobium on the basis of internally transcribed spacer region

  • 권순우 (농업생명공학연구원 유전자원과) ;
  • 김창영 (농업생명공학연구원 유전자원과) ;
  • 류진창 (농업생명공학연구원 분자생리과) ;
  • 고승주 (농업생명공학연구원 분자생리과)
  • Kwon, Soon-Wo (Genetic Resources Division, National Institute of Agricultural Biotechnology) ;
  • Kim, Chang-Yung (Genetic Resources Division, National Institute of Agricultural Biotechnology) ;
  • Ryu, Jin-Chang (Molecular Physiology Division, National Institute of Agricultural Biotechnology) ;
  • Go, Seung-Joo (Molecular Physiology Division, National Institute of Agricultural Biotechnology)
  • 투고 : 2002.03.20
  • 심사 : 2002.02.20
  • 발행 : 2002.02.28

초록

근류형성에 의한 생물학적 질소고정기능을 갖는 여러종의 근류균을 대상으로 분자생물학적 계통 분류의 기초자료를 얻기 위하여 Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium, Sinorhizobium 속의 33 균주에 대한 ITS 영역의 염기서열을 이용한 계통 분류가 이루어 졌다. 이들 균주중 대부분의 균주는 한 종류의 ITS 영역을 가지는 반면, 일부균주는 2개의 서로 다른 ITS 염기서열을 가지는 것으로 나타났다. 실험에 이용된 모든 균주들간의 ITS 영역의 염기서열 상동성은 28 - 95%로 매우 변이폭가 컸으며, 이들 염기서열의 계통 분석에 의하면 4가지 그룹으로 구분되었다. Sinorhizobium 속의 모든 균주 및 Rhizobium giardinii 는 그룹 I으로 구분되었다 그룹 II는 R. giardinii를 제외한 모든 Rhizibium 속의 균주를 포함하고 있으며, 계통수의 topology는 매우 불안정한 것으로 나타났다. 특히, R. radiobacter와 R. rubi는 계통분류학적 위치가 불명확한 것으로 나타났다. Bradyrhizobium 속의 균주는 Azorhizobium caulinodans 와 함께 그룹 III로 구분되었고, 그룹 IV는 Mesorhizobium 속의 균주로 이루어 ㅈ다. 특히, Mesorhizobium 속균주의 ITS 영역의 염기서열 상동성이 높게 나타났다.

The phylogenetic relationships for 33 strains belonging to the genera Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium were conducted by the sequence analyses of the ITS regions. The sequence homologies of these strains showed the high variations(28.0 - 94.9%). According to the phylogenetic analysis of ITS regions. 37 ITS clones from 33 strains of 32 species were classified into four groups. Group I included all strains of the genus Sinorhizobium as core members and R. giardinii as a peripheral member. The genus Rhizobium strains were clustered into group II which was very heterogeneous and the tree toplogy of this group were very unstable. Among the members of group II. the taxonomic position of R. radiobacter and R. rubi was not clearly identified on the basis of ITS I regions. R. undicola and R. vitis were remotely related with other Rhizobium strains including R. leguminosarum, R. galegae, R. gallicum, R. mongolense, R. tropici, R. hainanense, R. rhizogense and R. huautlense of group II were supposed to be loosely related to R. leguminosarum. While the stains of the genera Bradyrhizobium constituted group III with Azorhizobium caulindans, the strains of the genus Mesorhizobium formed group IV on the relatively high sequence homology level.

키워드

참고문헌

  1. Amarger, N., Macheret, V. & Laguerre, G. (1997). Rhizobturn gallicum sp. nov. and Rhizobium giardinitti sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47, 996-1006 https://doi.org/10.1099/00207713-47-4-996
  2. van Berkum, P., Beyene, D., Bao, G., Campbell, T. A. & Eardly, B. D. (1998). Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica[(L.)Ledebour].Int J Syst Bacteriol 48, 13-22 https://doi.org/10.1099/00207713-48-1-13
  3. van Berkum, P. & Fuhrmann, J. J. (2000). Evolutionary relationships among the soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. Int J Syst Evol Microbiol 5O,2165-2172
  4. Chen, W. X., Tan, Z. Y., Gao, J. L., Li, Y., & Wang, E. T. (1997). Rhizobium hainanse sp. nov. isolated from tropical legumes. Jnt J Syst Bacteriol 47, 870-873 https://doi.org/10.1099/00207713-47-3-870
  5. Chen. W. X., Yan, G. H. & Li, J. L. (1988). Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Stnorhizobtum gen. nov. Int J Syst Bacteriol 38, 392-397 https://doi.org/10.1099/00207713-38-4-392
  6. Dreyfus, B., Garcla, J. L. & Gillis, M. (1988), Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38, 89-98 https://doi.org/10.1099/00207713-38-1-89
  7. Fox, G. E., Wisotzkey, J. D. & Jurtshuk, P., Jr. (1992). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42, 166-170 https://doi.org/10.1099/00207713-42-1-166
  8. Hooykaas, P. J. J., van Brussel, A. A. N., den Dulk-Ras, H., van Slotgeren, G. M. S. & Schilperoort, R. A. (1981). Symplasmid of Rhizobium trifolii expressed in different rhizobial species and in Agrobacterium tumefaciens. Nature(London)291,351-353 https://doi.org/10.1038/291351a0
  9. Jarvis, B. D. W., Downer, H. L. & Young, J. P. W. (1992). Phylogeny of fast-growing soybean-nodulating rhizobia supports synonymy of Sinorhizobium and Rhizobium and assignment to Rhizobium fredtti. Int J Syst Bacteriol 42, 93-96 https://doi.org/10.1099/00207713-42-1-93
  10. Jarvis, B. D. W., Gillis, M. & De Ley, J. (1986). Intra- and intergeeneric similarities between the ribosomal ribonucleic acid cistrons of Rhizobium and Bradyrhizobium species and some related bacteria, Int J Syst Bacteriol 36, 129-138 https://doi.org/10.1099/00207713-36-2-129
  11. Jarvis, B. D. W., Van Berkum, P., Chen, W. X, Nour, S. M., Fernandez, M. P., Cleyet-Marel, J. C. & Gillis, M. (1997). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tlanshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47,895-898 https://doi.org/10.1099/00207713-47-3-895
  12. Johnston, A. W. B., Beynon, J. L., Buchanan-Wollaston, A. V., Setchel, S. M., Hirsh, P. R. & Beringer, J. E. (1978). High frequency transfer of nodulation ability between strains and species of Rhizobium. Nature (London) 276, 634-636 https://doi.org/10.1038/276634a0
  13. Jordan. D. C. (1984). Family III Rhizobiaceae. Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 234-244. Edited by N. R. Krieg & J. G. Holt. Baltimore: William & Wilkins
  14. Jukes, T. H. & Cantor, C. R. (1969). Evolution of protein molecules, p. 21-132. In H. N. Munro (ed.), Mammalian protein metabolism. Academic Press, NewYork. N. Y
  15. Kerr, A. (1969). Transfer of virulence between isolates of Agrobacterium. Nature(London)223,1175-1176 https://doi.org/10.1038/2231175a0
  16. Kumar, S., Tamura, K. & Nel, M. (1993). MEGA: molecular evolutionary genetics analysis, version 1.0. The Pennsylvania State University, University Park
  17. Laguerre, G., Fernandez, M. P., Edel, V., Nonnand, P. & Amarger, N. (1993). Genomic heterogeneity among French Rhizobium strains isolated from Phaseolus vulgaris L. Int J Syst Bacteriol 43, 761-767 https://doi.org/10.1099/00207713-43-4-761
  18. de Lajudie, P., Laurent-Fulele, E., Willems, A., Torck, U., Coopman, R., Collins, M. D., Kersters, K., Dreyfus, B. & Gillis, M. (1998a). Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Jnt J Syst Bacteriol 48, 1277-1290 https://doi.org/10.1099/00207713-48-4-1277
  19. de Lajudie, P., Willems, A., Nlck, G. & 9 other authors. (1998b). Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol48,369-382
  20. de Lajudie, P., Willems, A., Pot, B. & 7 other authors. (1994). Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizoblum and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44, 715- 733 https://doi.org/10.1099/00207713-44-4-715
  21. Lamb, J. W., Hombrecher, G. & Johnston, A. W. B. (1982). Plasmid-determined nodulation and nitrogen fixation abilities in Rhizobium phaseoli. Mol Gen Genet 186, 449-452 https://doi.org/10.1007/BF00729468
  22. Larebeke, N. V., Genetello, C., Schell, J., Schiperoort R. A., Hermans, A. K., Hernalsteens, J. P. & Montagu, M. V. (1975). Acquisition of tumor-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature(London)255,742-743 https://doi.org/10.1038/255742a0
  23. Maldak, B. L., Larsen, N., McCaughey, M. J., Overbeek, R., Olsen, G. J., Fogel, K., Blandy, J. & Woese, C. R. (1994). The rhibosomal database project. Nucleic Acids Res 22. 3485-3487 https://doi.org/10.1093/nar/22.17.3485
  24. Maynard Smith, J. (1995). Do bacteria population genetics? In Population Genetics of Bacteria, pp. 1-12. Edited by S. Baumberg, J. P. W. Young, E. M. H. Wellington & J.R. Saunders. Cambridge: Cambridge University Press
  25. Nakagawa, T., Shimada, M., Mukai, H., Asada, K., Kato, I., Fujino, K. & Sato, T. (1994). Detection of alcohol-tolerant Hiochi bacteria by PCR. Appl Environ Microbiol 60, 637-640
  26. Nick, G., de Lajudie, P., Eardly, B. D., Suomalainen, S., Paulin, L., Zhang, X., Gillis, M. & Lindstrom, K. (1999). Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49, 1359-1368 https://doi.org/10.1099/00207713-49-4-1359
  27. Nour, S. M., Fernandez, M. P., Normand, P. & Cleyet-Marel, J. -C. (1994). Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44, 511-522 https://doi.org/10.1099/00207713-44-3-511
  28. Pulawska, J., Maes, M., Willems, A. & Sobiczewski, P. (2000). Phylogenetic analysis of 23S rRNA gene sequences of Agrobacterium, Rhizobium and Sinorhizobium strains. Syst Appl Microbiol 23, 238-244 https://doi.org/10.1016/S0723-2020(00)80010-7
  29. Rome, S., Brunel, B., Fernandez, M. P., Normand, P. & Cleyet-Marel, J. C. (1996). Evidence of two genomic species of Rhizobium associated with Medicago truncatula revealed by PCR/RFLP and DNA/DNA hybridizations. Ach Microbiol 165, 285-288 https://doi.org/10.1007/s002030050328
  30. Rome, S., Fernandes, M. P., Brunel, B., Normand, P. & Cleyet-Marel, J.-C. (1996). Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Bacteriol 46, 972-980 https://doi.org/10.1099/00207713-46-4-972
  31. Saitou, N. and Nel, M. (1987). The neighbor-Joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425
  32. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y
  33. Sawada, H., leki, H., Oyaizu, H. & Matsumoto, S. (1993). Proposal for rejection of Agrobacterium turnefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int J Syst Bacteriol 43, 694-702 https://doi.org/10.1099/00207713-43-4-694
  34. Stackebrandt, E. & Goebel, B. M. (1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846-849 https://doi.org/10.1099/00207713-44-4-846
  35. Tan. Z. U., Xu, X. D., Wang, E. T., Gao, J. L., Martinez-Romero, E. & Chen, W. X. (1997). Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int J Syst Bacteriol 47, 874-879 https://doi.org/10.1099/00207713-47-3-874
  36. Terefework, Z., Nick, G., Suomalainen, S., Paulin, L. & Lindstrom, K. (1998). Phylogeny of Rhizobium galegae with respect to other rhizobia and agrobacteria. Int J Syst Bacteriol 48, 349-356 https://doi.org/10.1099/00207713-48-2-349
  37. Vincent, J. M. (1970). A manual for the practical study of root-nodule bacteria, p. 73-97. In International biological programme handbook. Blackwell Scientific Publications, Ltd., Oxford
  38. Dorado, 0., Chen, W. X. & Martinez-Romero, E. (1998). Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizoblum galegae.Int J Syst Bacteriol 48, 687-699 https://doi.org/10.1099/00207713-48-3-687
  39. Wang, E. T., van Berkum, P., Sui, X. H., Beyene, D., Chen, W. X. & Martinez-Romero, E. (1999). Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49, 51-65 https://doi.org/10.1099/00207713-49-1-51
  40. Sawada, H., leki, H., Oyalzu, H. & Matsumoto, S. (1993). Proposal for rejection of Agratxicterium turnefadens and revlsed descrtptions for the genus Agrobactertum and for Agrabactertum nadiobocter and Agrobactertum rhizqgenes. Int J Syst Bacteriol 43,694-702 https://doi.org/10.1099/00207713-43-4-694
  41. Stackebrandt, E. & Goebel, B. M. (1994). Taxonomic note: a place for DNA-DNA reassoclation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846-849 https://doi.org/10.1099/00207713-44-4-846
  42. Willems, A & Collins, M. D. (1993). Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int J Syst Bacteriol 43, 301-313
  43. Yanagi. M. and Yamasato, K. (1993). Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107, 115-120 https://doi.org/10.1111/j.1574-6968.1993.tb06014.x
  44. Yokota, A., Sakane, T., Ophel, K. & Sawada, H. (1993). Further studies on the cell fatty acid composition of Rhizobium and Agrobacterlium species. Inst Ferment Res Commun 16.86-94
  45. Young, J. M., Kuykendall, L. D., Martinez-Romero, E., Kerr, A. & Sawada, H. (2001). A revision of Rhizobium Frank 1889, wlth an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizcbium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vittis. Int J Syst Euol Mlcrobiol 51, 89- 103