Effects of Caffeine and calcium on the activities of the mouse osteoblastic cells

카페인과 칼슘이 골모 세포의 활성에 미치는 영향

  • Chun, Youn-Sic (Department of Orthodontics, Department of Dentistry, College of Medicine, Ewha Womans University) ;
  • Baik, Hye-Jung (Department of Dentistry, Ilsan paik hospital, Inje University)
  • 전윤식 (이화여자대학교 치과학교실) ;
  • 백혜정 (인제대학교 일산백병원)
  • Published : 2002.04.30

Abstract

The purpose of this study was to evaluate the effects of caffeine and calcium on the activities of the osteoblastic cell from mouse calvaria. The author cultured osteoblastic cells obtained from the mouse calvaria and were divided into three groups : the caffeine-treated, the calcium-treated and the combine-treated group. In caffeine-treated group, the cell toxicity was measured by MTT assay at 1, 2 and 4 days after treatment of caffeine. In all groups, the densities of the mineralized bone nodules were measured by imaging analyzer after Von Kossa staining. The alkaline phosphotase (ALP) activities were measured at 2, 7, 14, 21 and 28 days and the interleukin-1 ${\beta}$ activities at 48 hours after treatment of caffeine and calcium. The measurements were statistically executed with ANOVA test and the results were as follows. 1. The cellular toxicity of the caffeine increased with the concentration of caffeine during the incubation period. 2. The maximum densities of mineralization were observed at 0.2 mM caffeine-treated group, 1.2 mM calcium-treated group, 0.1 mM caffeine and 1.8 mM calcium-treated group. 3. The activities of ALP were peaked at 14 days at calcium-treated group as no-treated. But, the activities of ALP increased with concentrations of caffeine at caffeine-treated group. At combine-treated group, the act of ALP were peaked at 24 days at 1.2 mM, 1.8 mM calcium-treated group, But decreased at 2.5 mM calcium-treated group. 4. The activites of the IL-1 ${\beta}$ were increased significantly at 0.2 mM caffeine-treated group, 1.8 mM calcium-treated group and 0.1 mM caffeine and 1.8 mM calcium-treated group. But, they were decreased at all groups of high concentration.

사회적, 경제적 여건의 향상으로 성인들의 교정치료에 대한 관심이 커지고 있지만 폐경기 여성에 있어서 골다공증의 증가는 교정치료에 제한이 되며, 골다공증과 카페인과의 관련 여부는 최근까지 논란이 되고 있다. 따라서 본 연구의 목적은 생후 1일된 마우스의 골모세포를 in Vitro상에서 카페인과 칼슘 및 이 둘을 혼합 처리하여 골모세포의 활성에 미치는 영향에 대해 알아보고자 하였다. 실험에 사용한 골모세포는 마우스의 두개관에서 얻었으며, 카페인 단독 처리, 칼슘 단독 처리, 카페인과 칼슘의 혼합처리를 시행하였다. 카페인 처리를 한 경우 1일, 2일, 4일째 세포 독성 정도를 570 nm ELISA로 분석을 시행하였고, 카페인, 칼슘 및 혼합 처리시 배양 후 28일째 Von Kossa staining 후 영상분석기에 의해 광화된 골결절의 밀도를 측정하였으며, 염기성 인산분해효소 활성도 변화를 배양 후 2일, 7일, 14일, 21일, 28일째 405 nm spectrophotometer로 측정하였고, IL-1 ${\beta}$의 활성도를 48시간 후 492 nm ELISA로 분석을 시행하였다. 얻어진 수치들은 ANOVA test로 통계 분석하였다. 1. 카페인에 대한 세포 독성은 카페인의 농도가 1.0 mM, 2.0 mM로 증가함에 따라, 2일, 4일로 배양 기간이 길어짐에 따라 유의하게 증가하였고, 세포수는 감소하였다. 2. 광화된 골결절의 밀도는 카페인을 단독 처리한 경 우 0.2 mM에서, 칼슘 단독 처리시에는 1.2 mM에서, 혼합 처리한 경우 0.1 mM 카페인과 1.8 mM 칼슘에서 가장 크게 나타났다. 3. 염기성 인산분해효소 활성도는 비처리시 칼슘과 같이 14일째 최대값을 보이는 반면, 카페인을 단독 처리한 경우 농도가 증가함에 따라 활성도가 증가하였다. 카페인과 칼슘 혼합 처리시에는 칼슘 농도가 1.2 mM, 1.8 mM인 경우 배양 14일에 염기성 인산분해효소의 활성도가 유의하게 증가하였으나, 2.5 mM인 경우 활성도가 감소하였다. 4. II-1 ${\beta}$의 활성도는 카페인을 단독 처리한 경우 0.2 mM, 1.0 mM에서, 칼슘 단독 처리시에는 1.8 mM에서, 혼합 처리시 0.1 mM 카페인과 1.8 mM 칼슘 혼합 처리한 경우 높게 나타났고, 고농도의 카페인, 칼슘 혼합 처리 시에는 낮게 나타났다 이러한 실험 결과를 통하여 칼슘이 1.2 mM, 1.8 mM 농도로 존재하는 경우 카페인에 의한 골모세포의 염기성 인산분해효소 활성과 IL-1 ${\beta}$의 활성 억제 효과가 어느 정도 회복되나, 2.5 mM 고농도의 칼슘은 억제된 활성을 회복시키지 못함을 확인하였다.

Keywords

References

  1. Richard E. Primer on the metabolic bone disease and disorders of mineral metabolism: An official publication of the American society for bone and mineral research. Lipincott Williams & Wilkins 1998 : 260-88
  2. Kreiger N, Gross A, and Hunter G. Dietary factors fracture in postmenopausal woman: a case-control study. Int J Epidemiol 1992 : 21 : 953-8 https://doi.org/10.1093/ije/21.5.953
  3. Kiel DP, Felson DT, Hannan MT, Anderson JJ. Wilson PW. Caffeine and the risk of hip fracture : the Framingham study. Am J Epidemiol 1990 : 132 : 675-84 https://doi.org/10.1093/oxfordjournals.aje.a115709
  4. Collins JF, Welsh JJ, Black TN, Whiteby KE, O'Donnell MW Jr. Potential reversibility of skeletal effects in rats exposed in utero to caffeine. food Chem Toxicol 1987 : 25 : 647-62 https://doi.org/10.1016/0278-6915(87)90098-6
  5. Wink CS, Rossowska MJ, Nakamoto T. Effects of caffeine on bone cells and bone development in fast-growing rats. Anat Rec 1996: 246 : 30-8 https://doi.org/10.1002/(SICI)1097-0185(199609)246:1<30::AID-AR4>3.0.CO;2-J
  6. Fujii T, Nishimura H. Adverse administration of caffeine on rat fetus. Toxicol Appl Pharmacol 1972 : 22 : 449-57 https://doi.org/10.1016/0041-008X(72)90252-9
  7. Kamagata-Kiyoura Y, Ohta M, Yazdani M et. al. Effect of caffeine on osteoblast-like cells in vitro. J Dent Res (IADR Abstracts) 1997: 76 : 1778
  8. Zeroogian J, Lian JB, Tassinari MS. Caffeine inhibits endochondral bone development in demineralized bone implants. J Bone Miner Res 1988 : 3 : s176
  9. Akesson K, Lau KH, Johnston P, Imperio E, Baylink DJ, Effect of short-term calcium depletion and repletion on biochemical markers of bone turnover in young adult women. J Clin Endocinol Metal 1998 : 83 : 1921-7 https://doi.org/10.1210/jc.83.6.1921
  10. Talmage RV, Grubb SA. A laboratory model demonstrating osteocyte-osteoblast control of plasma calcium concentrations. Clin Orthop ReI Res 1997: 122 : 299-306
  11. Shirai Y, Yoshimura Y, Yawaka Y, et. al. Effect of extracellular calcium concentrations on osteoclast differentiation in vitro. Biochem Biophys Res Ccmmun 1999 : 265 : 484-8 https://doi.org/10.1006/bbrc.1999.1664
  12. Whiting SJ, Whitney HL. Effect of dietary caffeine and theophylline on urinary calcium excretion in the adult rat. J Nutr 1987 : 117 : 1224-8 https://doi.org/10.1093/jn/117.7.1224
  13. Bergman EA, Newbrey JW, Massey LK. Caffeine does not cause in vitro calcium loss from neonatal mouse calvaria. Calcif Tissue Int 1988 : 43 : 281-3 https://doi.org/10.1007/BF02556636
  14. Cillo JE Jr. Gassner R, Koepsel RR, Buckley MJ, Growth factor and cytokine gene expression in mechanically stained human osteoblast- like cells: implications for distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000 : 90 : 147-54 https://doi.org/10.1067/moe.2000.107531
  15. Lynch PB, Davidovitch Z, Shanfeld I. Interleukin-I $\beta$ at bone resorption sites: localization during tooth movement in vivo. 1998 : J Dent Res: 67 : 1474
  16. Tassinari MS, Stein GS, Lian JB. Caffeine affects osteoblast proliferation and mineralization. J Bone Miner Res 1998 : 176
  17. Bellows CG, Aubin JE. Determination of numbers of osteoprogenitors present in isolated fetal rat calvaria cells in vitro. Dev BioI 1989 : 133 : 8-13 https://doi.org/10.1016/0012-1606(89)90291-1
  18. Tassinari MS, Gerstenfeld LC, Stein GS, Lian JB. Effect of caffeine on parameters of osteoblast growth and differentiation of a mineralized extracellular matrix in vitro. J Bone Miner Res 1991 : 6 : 1029-36
  19. Barone LM, Tassinari MS, Bortell R, et. al. Inhibition of induced endochodral bone development in caffeine-treated rats. J Cell Biochem 1993: 52 : 171-82 https://doi.org/10.1002/jcb.240520209
  20. Varani K, Portaluppi F, Merighi S, et. al. Caffeine alters A2 a adenosine receptors and their function in human platelets. Circulation 1999 : 99 : 2499-502 https://doi.org/10.1161/01.CIR.99.19.2499
  21. Dreja K, Hellstrand P. Differential modulation of caffeine-and ${IP}_3$induced calcium release in cultured arterial tissue. Am J Physiol 1999 : 276 : 1115-20 https://doi.org/10.1152/ajpcell.1999.276.5.C1115
  22. Murayama T, Kurebayashi N, Ogawa Y. Role of ${Mg}^+^+$ in ${Ca}^+^+$induced ${Ca}^+^+$ release through ryanocline receptors of frog skeletal muscle : modulations by adenosine nucleotides and caffeine. Biophy J 2000 : 78 : 1810-24 https://doi.org/10.1016/S0006-3495(00)76731-2
  23. Martin C, Hyvelin J, Chapman KE, et. al. Pregnant rat myometrial cells show heterogenous ryanodind-and caffeine-sensitive calcium stores. Am J Physiol 1999: 277 : 243-52 https://doi.org/10.1152/ajpcell.1999.277.2.C243
  24. Hofer AM, Curci S, Doble MA, Brown EM, Soybel DI. Intercellular communication mediated by the extracellular calciumsensing receptor. Nature cell biology 2000 : 2 : 392-8 https://doi.org/10.1038/35017020
  25. Kim YK, Cho HJ, Kim WT, Cho KS. Caffeine-and inositol 1,4,5 -triphosphate-${induced}^4^5$ ${Ca}^+^+$releases in the microsomes of tracheal epithelial cells: Biochem Biophys Res Commun 1997 : 230 : 247-50 https://doi.org/10.1006/bbrc.1996.5936
  26. Zhang XH, Wu J, Shen MX, Zhn PH. Calcium release induced by high ${K}^+$ and caffeine in cultured skeletal muscle cells of embryo- nic chicken. PfIugers Arch 1999 : 438 : 827-36 https://doi.org/10.1007/s004240051112
  27. Ikeda GJ, Sapienza PP, McGinnins ML, et. al. Blood levels of caffeine and results If fetal examination after oral administration of caffeine to pregnant rats. J Appl Toxicol 1982 : 2 : 307-14 https://doi.org/10.1002/jat.2550020609
  28. Collins TF, Welsh JJ, Black TN, Ruggles DI. A study of the teratogenic potential of caffeine ingested in drinking water. Food Chem Toxicol 1983 : 21 : 763-77 https://doi.org/10.1016/0278-6915(83)90211-9
  29. Heaney RP, Recher RR. Effects of nitrogen, phosphorus, and caffeine on calcium balance in women. J Lab Clin Med 1982 : 99 : 46-55
  30. Franceschi RT, Young J. Regulation of alkaline phosphotase by 1,25-dihydroxyvitamine ${D}_3$ and ascorbic acid in bone-derived cells. J Bone Miner Res 1990 : 5 : 1157-67
  31. Manduca P, Sanguineti C, Pistone M, et. al. Differential expression of alkaline phosphotase in clones of human osteoblas like cells. J Bone Miner Res 1993 : 8 : 291-300
  32. Tong J, Guang G, Chen SR, Maclennan DH. HEK-293 cells possess a carbachol-and thapsigarin-sensitive intracellular ${Ca}^+^+$ store that is responsive to stop-flow medium changes and insensitive to caffeine and ryanodine. Biochem J 1999 : 343 : 39-44 https://doi.org/10.1042/0264-6021:3430039
  33. Heinegard, Oldberg A. Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASES J 1989 : 3 : 2042-51
  34. Liu YK, Uemura T, Nemoto A, et. al. Osteopontin involvement in integrin -rnediated cell signaling and regulation of expression of alkaline phosphatase during early differentiation of UMR cell. FEBS Lett 1997 : 420 : 112-6 https://doi.org/10.1016/S0014-5793(97)01498-1
  35. Lian JB, Gundberg CM. Osteocalcin : Biochemical considerations and clinical applications. Clin Orthop 1988 : 226 : 267-91