An Implementation of Temperature Independent Bias Scheme in Voltage Detector

온도에 무관한 전압검출기의 바이어스 구현

  • Moon, Jong-Kyu (Dept. of Electronics, Information and Communication, Daewon Science College) ;
  • Kim, Duk-Gyoo (School of Electrical Engineering and Computer Science, Kyoungpook National University)
  • 문종규 (大元科學大學 電子情報通信科) ;
  • 김덕규 (慶北大學校 電子電氣컴퓨터學部)
  • Published : 2002.11.01

Abstract

In this paper, we propose a temperature independent the detective voltage source in voltage detector. The value of a detective voltage source is designed to become m times of silicon bandgap voltage at zero absolute temperature. By properly choosing the temperature coefficient of diode, the temperature coefficient of a concave voltage nonlinearities generated by the ${\Delta}V_{BE}$ section of diode between base and emitter of transistors with a different area can be summed with convex nonlinearities the $V_{BE}$ voltage to achieve the near zero temperature coefficient of the detective voltage source. We designed that the value of a detective voltage can be varied by ${\Delta}V_{BE}$, the $V_{BE}$multiplier circuit and resistor. In order to verify the performance of a proposed detective voltage source, we manufactured the voltage detector IC for 1.9V which is fabricated in $6{\mu}m$ Bipolar technology and measured the operating characteristics, the temperature coefficient of a detective voltage. To reduce the deviation of a detective voltage in the IC process step, we introduced a trimming technology, ion implantation and an isotropic etching. In manufactured IC, the detective voltage source could achieve the stable temperature coefficient of 29ppm/$^{\circ}C$ over the temperature range of -30$^{\circ}C$ to 70$^{\circ}C$. The current consumption of a voltage detector constituted by the proposed detective voltage source is $10{\mu}A$ from 1.9V-supply voltage at room temperature.

본 논문에서는 전압검출기에 사용되는 온도에 무관한 검출 전압원을 제안한다. 검출 전압원이 절대온도 영도(Zero degree)에서 실리콘 밴드갭 전압의 m배가 되도록 설계한다. 검출 전압원의 온도계수는 트랜지스터 이미터-베이스 사이의 서로 다른 면적을 가진 다이오드에 생성된 비선형 전압인 ${\Delta}V_{BE}$의 오목한 온도계수와 트랜지스터 순방향 전압인 $V_{BE}$의 볼록한 비선형 온도계수의 합으로 다이오드의 온도계수를 적절히 선택함으로서 거의 제로의 온도계수를 실현한다. 또한 검출 전압원의 값이 ${\Delta}V_{BE}$, $V_{BE}$ 멀티플라이어 회로 및 저항을 이용하여 변화될 수 있도록 설계하였다. 제안한 검출 전압원의 성능을 평가하기 위해, $6{\mu}m$ 바이폴러 기술로 조립된 1.9V용 IC를 제작하여 검출 전압원의 동작특성과 온도계수를 측정하였다. 또한 검출 전압원의 값이 공정에 의해 변화되는 요인을 줄이기 위해 트리밍 기술, 이온 임플란테이션과 이방성 에칭을 도입하였다. 제작된 IC에서 검출 전압원은 -30$^{\circ}C$~70$^{\circ}C$의 온도범위에서 29ppm/$^{\circ}C$의 안정된 온도계수를 얻을 수 있었다. 그리고 전압검출기의 소비전류는 1.9V 공급전압에서 $10{\mu}A$이다.

Keywords

References

  1. R.J. W ildar, 'New development in IC regulators,' IEEE J. Solid-State Circuits, Vol. SC-6, pp. 2-7, 1971
  2. W. Timothy Holman, 'A New Temperature Compensation Technique for Bandgap Voltage Reference,' IEEE International Symposium on Circuit and System Vol. 1, pp. 385-388, 1996 https://doi.org/10.1109/ISCAS.1996.539965
  3. John Micheja, Suk K. Kim, 'A Precision CMOS Bandgap Reference,' IEEE J. Solid-State Circuits, Vol. 19, no 6, Dec. 1984
  4. R. Ye, Y. Tsivids, 'Bandgap Voltage Reference Sources in CMOS Technology,' IEE Electronis Letters, Vol. 18, no 1, July 1982 https://doi.org/10.1049/el:19820018
  5. Ban-Sup Song Paul R. Gray, 'A Precision Curvature-compensated CMOS Bandgap Reference,' IEEE J. Solid-State Circuits, Vol. SC-18, no. 6, Dec. 1983
  6. Karl E. Kuijk, 'A Precision Reference Voltage Sources,' IEEE J. Solid-State Circuits, Vol. SC-8, no. 3, June 1984
  7. P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, New York : John Wiely & Sons. pp. 80, 239-261, 1977
  8. Y. Tsivids, 'Accurate analyzes of temperature effects in Ic- Vbe characteristics with application to bandgap reference sources,' IEEE J. Solid-State Circuits, Vol. 15, pp. 1076-1084, Dec. 1980 https://doi.org/10.1109/JSSC.1980.1051519
  9. S. M. Sze, Physics of Semiconductor Devices, New York: John Wiely & Sons. pp. 66, 1981
  10. D. J. Hamilton, W. G. Howard, Basic Integrated Circuits Engineering, McGraw-Hill, Inc. pp. 8-12, 97, 1975
  11. H. A. Ainspan, C. S. Webster, 'Measured results on bandgap reference in SiGe BiCOMS,' IEE Electronic Letters, Vol. 34, no 15, pp. 1441-1442, July 1998 https://doi.org/10.1049/el:19981061
  12. A.P. Brokaw, 'A Simple Three-Terninal IC Bandgap Reference,' IEEE J. Solid-State Circuits, Vol. SC-6, pp. 388-393, December 1974 https://doi.org/10.1109/JSSC.1974.1050532