완전차동용량형 압력센서를 위한 적분형 C-V 변환기

Integral C-V Converter for a Fully Differential Capacitive Pressure Sensor

  • 이대성 (電子部品硏究院, 나노메카트로닉스연구센터) ;
  • 김규철 (檀國大學校 電子컴퓨터工學科) ;
  • 박효덕 (電子部品硏究院, 나노메카트로닉스연구센터)
  • Lee, Dae-Sung (Korea Electronics Technology Institute, Nano-Mechtronics Research Center) ;
  • Kim, Kyu-Chull (Dankook University, Dept. of Electrical, Electronics & Computer Engineering) ;
  • Park, Hyo-Derk (Korea Electronics Technology Institute, Nano-Mechtronics Research Center)
  • 발행 : 2002.09.01

초록

본 논문에서는 용량형 압력센서의 비선형성 문제를 해결하기 위한 적분형 C-V 변환기를 제안하였다. 이 변환기는 스위치 커패시터 적분기와 스위치 커패시터 차동증폭기로 구성되어 있으며 인가된 압력에 반비례하는 센서용량을 전압으로 변환하여 선형적으로 출력한다. 제안된 적분형 C-V 변환기는 PSPICE 시뮬레이션에서 초기 전극간격의 90%에 해당하는 큰 변위에 대해서 0.01%/FS 이하의 매우 낮은 비선형도와 오프셋 용량 및 기생용량에 둔감한 우수한 특성을 보였다. 또한 센서신호처리의 필수기능인 오프셋 보정 및 이득조정이 적분형 C-V 변환기에서 용이하게 구현됨을 보였다.

An intergral C-V converter is proposed to solve the nonlinearity problem of capacitive pressure sensors. The integral C-V converter consists of a switched-capacitor integrator and a switched-capacitor differential amplifier. It converts the sensor capacitance change which is inversely proportional to an applied pressure into a linear voltage output. Various PSPICE simulations prove that the convertor has excellent characteristics, such as low nonlinearity less than 0.01%/FS and low sensitivity to parallel offset capacitance and parasitic capacitance for the displacement range of sensor diaphragm set to 0 ${\sim}$ 90% of the initial distance between the electrodes in the simulation. We also show that the offset compensation and the gain trimming are easily achieved with the integral C-V converter.

키워드

참고문헌

  1. M.M. O. Lee, 'Merged technology on MEMS', Proceedings of IEEE Electron Devices Meeting, Hong Kong, 1997, pp. https://doi.org/10.1109/HKEDM.1997.642349
  2. Giuseppe Ferri, P.D. Laurentiis, 'A novel low voltage low power oscillator as a capacitive sensor interface for portable applications', Sensors and Actuators, 76(1999), pp. 437-441 https://doi.org/10.1016/S0924-4247(98)00368-9
  3. J.M Borkey, K.D. Wise, 'Integrated signal conditioning for pressure sensor', IEEE Trans. Electron Devices, ED 26 (1979), pp. 1906-1910 https://doi.org/10.1109/T-ED.1979.19794
  4. H.J. Kress, F. Bantien, J. Marek, M. Williwann, 'Silicon pressure sensor with integrated CMOS signal conditioning circuit and compensation of temperature coefficient', Sensor and Actuators, A 25-27(1991), pp. 21-26
  5. Lee, B. N., Kim, K. N., Park, H. D. and Shin, S. M., 1999, 'Calibration and Temperature Compensation of Silicon Pressure Sensors using Ion-implanted Trimming Resistors,' Sensors and Actuators A, Vol. 72, pp. 148-152 https://doi.org/10.1016/S0924-4247(98)00214-3
  6. Y.S. Lee and K.D. Wise, 'A batch fabricated silicon capacitive pressure sensor with low temperature sensitivity', IEEE Trans. Electron Devices, Vol. 10, pp. 113-120, 1983 https://doi.org/10.1109/T-ED.1963.15165
  7. Carlos H. Mastrangelo, Xia Zhang, William C. Tang, 'Surface Micromachined Capacitive Differential Pressure Sensor with Lithographically Defined Silicon Diaphragm', journal of Microeletromechanical system, Vol. 5, NO 2, June 1996 https://doi.org/10.1109/84.506197
  8. C.C. Wang, B.P. Gogoi, D.J. Monk, C.H. Mastrangelo, 'Contamination insensitive differential capacitive pressure sensors', Journal of Microeletromechanical Systems, Vol. 9, NO. 4, Dec. 2000 https://doi.org/10.1109/84.896776
  9. Misuhiro Yamada, Takashi Takebayashi, Shun-Ichi Notoyama, and Kenzo Watanabe, 'A Switched-Capacitor Interlace for Capacitive Pressure Sensors', IEEE Trans. on Instru. and Measurement, Vol. 41, No.1, Feb. 1992 https://doi.org/10.1109/19.126637
  10. J.A. Voorthuyzen et al., 'Optimization of capacitive microphone and pressure sensor performance by capacitor electrode shaping', Sensor and Actuators A, 25-27 (1991), pp. 331-336 https://doi.org/10.1016/0924-4247(91)87012-R
  11. H. Sandmaier, K. Kuhl, 'A square diaphragm piezoresistive pressure sensor with a rectangular central boss for low pressure ranges', IEEE Trans. on Electron Devices, Vol. 40, NO. 10, Oct, 1993 https://doi.org/10.1109/16.277331
  12. B. E. Boser, 'Electronics for micromachined inertial sensors', Transducers 1997 Chicago, June 16-19, 1997 https://doi.org/10.1109/SENSOR.1997.635413
  13. F.E.H. Tay J. Xu, V.J. Logeeswaran, 'A differential capacitive low-g microaccelerometer with m g resolution', Sensors and Actuators, 86(2000), pp. 45-51 https://doi.org/10.1016/S0924-4247(00)00424-6
  14. Baoqing Li, Deren Lu, Weiyuan Wang, 'Open-loop operating mode of micromachined capacitive accelerometer', Sensors and Actuators, 79(2000), pp. 219-223 https://doi.org/10.1016/S0924-4247(99)00286-1