DOI QR코드

DOI QR Code

Cracking Behavior of Reinforced Concrete Structures due th Reinforcing Steel Corrosion

철근부식에 의한 철근콘크리트 구조물의 균열거동

  • Published : 2002.12.01

Abstract

Corrosion products of reinforcement in concrete induce pressure to the adjacent concrete due to the expansion of steel. This expansion causes tensile stresses around the reinforcing bar and eventually induces cracking through the concrete cover The cracking of concrete cover will adversely affect the safety as well as the service life of concrete structures. The purpose of the this study is to examine the critical corrosion amount which causes the cracking of concrete cover. To this end, a comprehensive experimental and theoretical study has been conducted. Major test variables include concrete strength and cover thickness. The strains at the surface of concrete cover have been measured according to the amount of steel corrosion. The corrosion products which penetrate into the pores and cracks around the steel bar have been considered in the calculation of expansive pressure due to steel corrosion. The present study indicates that the critical amount of corrosion, which causes the initiation of cracking, increases with an increase of compressive strength. A realistic relation between the expansive pressure and average strain of corrosion product layer in the corrosion region has been derived and the representative stiffness of corrosion layer was determined. A concept of pressure-free strain of corrosion product layer was introduced to explain the relation between the expansive pressure and corrosion strain. The proposed theory agrees well with experimental data and may be a good base for the realistic durability design of concrete structures.

철근의 부식에 의해 발생하는 부식생성물은 부피팽창으로 인하여 주위의 콘크리트에 압력을 가한다. 이 팽창압은 철근 주의의 콘크리트에 인장응력이 생기게 하며 결국 콘크리트의 피복에 균열을 발생시킨다. 콘크리트 피복의 균열발생은 콘크리트 구조물의 사용수명을 감소시킬 뿐만 아니라 안전성에도 영향을 미친다. 본 연구의 목적은 콘크리트 피복에 균열을 일으키는 임계부식량을 조사하는 것이다. 이를 위하여 포괄적인 실험 및 이론적 연구를 수행하였다. 주요 실험변수로는 콘크리트의 강도와 피복두께이고 부식량의 증가에 따른 콘크리트 피복 표면의 인장변형률을 측정하였다. 철근 팽창에 의한 팽창압의 계산에 공극 및 균열 속으로 흡수되는 부식생성물을 고려하였다. 본 연구를 통하여 균열을 일으키는 임계부식량은 콘크리트 압축강도가 커짐에 따라 증가한다는 사실을 확인하였다. 부식층 내의 팽창압과 변형 사이의 관계를 유도하였으며 부식생성물층의 강성을 결정하였다. 팽창압과 변형 사이의 관계를 설명하기 위하여 압력을 유발하지 않는 변형량의 개념을 도입하였다. 본 연구에서 제안된 이론은 실험결과와 잘 일치하며 콘크리트 구조물의 내구성 설계에 기초가 될 수 있을 것이다.

Keywords

References

  1. Liu, Y. and Weyers, R. E. (1998), "Modelling the Time-to Corrosion Cracking in Chloride Contaminated Reinforced Concrete Structures," ACI Mat. J., 95(6), pp.675-681.
  2. Martin-Perez, B. (1998), "Service Life Modelling of RC Highway Structures Exposed to Chlorides," Ph.D Dissertation, Dept. of Civ. Engrg., University of Toronto, Toronto.
  3. Bazant, Z. P. (1979b), "Physical Model for Steel Corrosion in Concrete Sea Structures Application," J. Struct. Div., ASCE, 105(6),pp.1155-1166.
  4. Masayasu Ohtsu, Shinichi Yosimura, "Analysis of Crack Propagation and Crack Initiation Dueto Corrosion of Reinforcement," Construction and Building MateriaIs, Vol.11, No.7-8, pp.437-442, 1997. https://doi.org/10.1016/S0950-0618(97)00020-2
  5. H. J. Dagher and S. Kulendran, "Finite Element Modeling of Corrosion Damage in Concrete Structures," ACI Structural Journal, V.89, No.6, Nov.-Dec., 1992.
  6. K. Lundgren, "Modelling Bond Between Corroded Reinforcement and Concrete," Proceedings of the Fourth International Conference on Fracture Mechanics of Concrete and Concrete Structures, Cachan, France, 28 May - 1 June 2001, Fracture Mechanics of Concrete Structures, Vol. 1, pp.247-254.
  7. Jang, B. S., "Life Time Estimation Method of Reinforced Concrete Structures Considering the Effects of Reinforcements on the Chloride Diffusion and the Non-uniform Corosion Distribution," Ph.D Dissertation, Dept. of Civ. Engrg., Seoul National University, Seoul.

Cited by

  1. Flexural Behavior of Reinforced Concrete Beams Considering Steel Corrosion vol.15, pp.5, 2014, https://doi.org/10.5762/KAIS.2014.15.5.3251