Screening of High-Productivity Cell Lines and Investigation of Their Physiology in Chinese Hamster Ovary (CHO) Cell Cultures for Transforming Growth $Factor-{\beta}1$ Production

  • Chun, Gin-Taek (Division of Life Sciences, Kangwon National University) ;
  • Lee, Joo-Buom (Division of Life Sciences, Kangwon National University) ;
  • Nam, Sang-Uk (Department of Science Educations, Kangwon National University) ;
  • Lee, Se-Won (Division of Life Sciences, Kangwon National University) ;
  • Jeong, Yeon-Ho (Division of Food and Biotechnology, Kangwon National University) ;
  • Choi, Eui-Yul (Department of Genetic Engineering, Hallym University) ;
  • Kim, Ik-Hwan (Graduated School of Biotechnology, Korea University) ;
  • Jeong, Yong-Seob (Division of Biotechnology, Chonbuk National University) ;
  • Kim, Pyeong-Hyeun (Division of Life Sciences, Kangwon National University)
  • Published : 2002.02.01

Abstract

Using recombinant Chinese hamster ovary (CHO) cells, strategies for developing high producers for the recombinant human Transforming Growth $Factor-{\beta}1$ ($TGF-{\beta}1$) protein are proposed and their physiological characteristics in cell cultures were investigated. $TGF-{\beta}1$ is a pleiotrophic polypeptide involved in various biological activities, including cell growth, differentiation, and deposition of extracellular matrix proteins. The CHO cells included human $TGF-{\beta}1$ cDNA in conjunction with a dihydrofolate reductase (DHFR) gene, which was cotransfected into the cells to amplify the transfected $TGF-{\beta}1$ cDNA. As a first-round screening of the transfected cells, a relatively high $TGF-{\beta}1$-producing cell line was selected, and then, it acquired a resistance to increasing concentrations of methotrexate (MTX) up to $60{\mu}M$,resulting in a significant improvement in its $TGF-{\beta}1$ biosynthetic ability. After applying a monoclonal selection strategy to the MTX-resistant cells, more productive cells were screened, including the APP-3, App-5, and App-8 cell lines. These high producers were compared with two other cell lines (AP-l cell line without amplification of transfected $TGF-{\beta}1$ cDNA and nontransfectant of $TGF-{\beta}1$ cDNA) in terms of cell growth, $TGF-{\beta}1$ productivity, sugar uptake, and byproduct formation, in the presence or absence of MTX in the culture medium. Consequently, both monoclonal selection as well as an investigation of the physiological characteristics were found to be needed for the efficient screening of higher $TGF-{\beta}1$ producers, even after the transfection and amplification of the transfected gene.

Keywords

References

  1. J. Biol. Chem. v.258 Transforming growth factor-β in human platelets Assoian, R. K.;A. Komoriya;C. A. Meyers;D. M. Miller;M. B. Sporn
  2. DNA Cloning 4: A Practical Approach Use of vectors based on gene amplification for the expression of cloned genes in mammalian cells Bebbington, C.;Glover, D. M.(ed.);B. D. Hames(ed.)
  3. Ciba Foundation Symposium v.157 Clinical Applications of TGF-β Bock, G. R.;J. Marsh
  4. Animal Cell Technology - Principles and products Butler, M.
  5. J. Microbiol. Biotechnol. v.10 Plasmid stability in long-term hG-CSF production using L-arabinose promotor system of Escherichia coli Choi, S.-J.;D.-H. Park;S.-I. Chung;K.-H. Jung
  6. J. Immunol. Method. v.158 Improved sandwich enzywich enzyme-linked immunosorbent assays for TGF-β1 Danielpour, D. https://doi.org/10.1016/0022-1759(93)90254-5
  7. Nature v.316 Human transforming growth factor-β1 complementary DNA sequence and expression of normal and transformed cells Derynck, R.;J. A. Japrett;E. Y. Chen;D. H. Eaton;J. R. Bell;R. K. Assoian;A. B. Roberts;M. B. Sporn https://doi.org/10.1038/316701a0
  8. Adv. Pharmacol. v.24 Activation of latent transforming growth factor β Flaumenhaft, R.;S. Kojima;M. Abe;D. B. Rifkin https://doi.org/10.1016/S1054-3589(08)60933-3
  9. Proc. Natl. Acad. Sci. USA v.80 Purification and initial characterization of a type beta transforming growth factor from human placenta Frolik, C. A.;L. L. Dart;C. A. Meyers;D. M. Miller;M. B. Sporn https://doi.org/10.1073/pnas.80.12.3676
  10. Mol. Cell. Biol. v.8 Molecular events in the processing of recombinant type 1 pre-pro-transforming growth factor beta to the mature polypeptide Gentry, L. E.;M. N. Lioubin;A. F. Purchio;H. Marquardt https://doi.org/10.1128/MCB.8.10.4162
  11. J. Exp. Med. v.163 Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth Kehrl, J. H.;L. M. Wakerfield;A. B. Roberts;S. B. Jakowlew;M. Alvarez-Mon;R. Derynick;M. B. Sporn;A. S. Fauci https://doi.org/10.1084/jem.163.5.1037
  12. Biotechnology: A Multi-Volume Comprehensive Treatise v.3 Industrial animal cell culture Kelley, B. D.;T.-W. Chiou;M. Rosenberg;D. I. C. Wang;Rehm, H.-J.(ed.);G. Reed(ed.)
  13. J. Microbiol. Biotechnol. v.9 Reduction of FBS concentration through adaptation process in mammalian cell culture and addition of silkworm hemolymph in insect cell culture Kim, E. J.;T. H. Park
  14. Kor. J. Immunol. v.16 Immunodetection of transforming growth factor-β1 by an improved enzymelinked immunosorbent assay Kim, Y.-J.;M.-C. Lee;Y.-E. Park;H.-T. Kim;E.-Y. Choi;W.-H. Byeon;P.-H. Kim
  15. Eur. J. Biochem. v.187 Transforming growth factors and the regulation of cell proliferation Lyons, R. M.;H. L. Moses https://doi.org/10.1111/j.1432-1033.1990.tb15327.x
  16. Annu. Rev. Cell. Biol. v.6 The transforming growth factor-β family Massague, J. https://doi.org/10.1146/annurev.cb.06.110190.003121
  17. J. Biol. Chem. v.263 Latent high molecular weight complex of transforming growth factor-1. Purification from human platelets and structural characterization Miyazono, K.;U. Hellman;C. Wernstedt;C. H. Heldin
  18. EMBO J. v.10 A role of the latent TGF-β1-binding protein in the assembly and secretion of TGF-β1 Miyazono, K.;A. Olofsson;P. Colosetti;C. H. Heldin
  19. Bio/Technology v.9 High level expression of the humanized monoclonal antibody Campath-1 H in Chinese hamster ovary cells Page, M. J.;M. A. Sydenham https://doi.org/10.1038/nbt0191-64
  20. J. Microbiol. Biotechnol. v.10 Improved refolding of recombinant human proinsulin from Escherichia coli in a two-stage reactor system Phue, J.-N.;S.-J. Oh;Y.-J. Son;Y.-I. Kim;K.-H. Kim;J.-W. Kim;C. I. Hong;I.-S. Chung;T.-R. Hahn
  21. Biochem. Biophys. Res. Commun. v.136 β-Transforming growth factor is stored in human blood platelets as a latent high molecular weight complex Pircher, R.;P. Jullien;D. A. Lawrence https://doi.org/10.1016/0006-291X(86)90872-7
  22. Handbook of Experimental Pharmacology. Peptide Growth Factors and Their Receptors v.95 The transforming growth factors-β Roberts, A. B.;M. B. Sporn;M. B. Sporn(ed.);A. B. Roberts(ed.)
  23. Cell v.37 Gene amplification in cultured animal cells Schimke, R. T. https://doi.org/10.1016/0092-8674(84)90406-9
  24. Proc. Natl. Acad. Sci. USA v.82 Purification and characterization of two cartilage-inducing factors from bovine demineralized bone Seyedin, S. M.;T. C. Tomas;A. Y. Thompson;D. M. Rosen;K. A. Picz https://doi.org/10.1073/pnas.82.8.2267
  25. JAMA v.262 Transforming growth factor-β: Multiple actions and potential clinical applications Sporn, M. B.;A. B. Roberts https://doi.org/10.1001/jama.262.7.938
  26. Cell Regul. v.1 TGF-β: Problems and prospects Sporn, M. B.;A. B. Roberts
  27. Biotech. Adv. v.8 Manufacture of biopharmaceutical proteins by mammalian cell culture systems Tolbert, W. R. https://doi.org/10.1016/0734-9750(90)91994-R
  28. J. Biol. Chem. v.263 Latent transforming growth factor-β from human platelets Wakefield, L. M.;D. M. Smith;K. C. Flanders;M. B. Sporn
  29. Growth Factors v.1 Recombinant TGF-β1 is synthesized as a two-component latent complex that shares some structural features with the native platelet latent TGF-β1 complex Wakefield, L. M.;D. M. Smith;S. Broz;M. Jackson;A. D. Levinson;M. B. Sporn https://doi.org/10.3109/08977198908997997
  30. Recombinant DNA(2nd ed.) Watson, J. D.;J. Witkowski;M. Gilman;M. Zoller