References
- Mol. Microbiol. v.28 Metal ion homeostasis and intracellular parasitism Agranoff, D. D.;S. Krishna https://doi.org/10.1046/j.1365-2958.1998.00790.x
- Current Protocols in Molecular Biology(2nd ed.) Ausubel, F. M.;R. Brent;R. E. Kingston;D. D. Moore;J. G. Seidman;J. A. Smith;K. Struhl
- Infec. Immun. v.64 Allelic exchange mutagenesis of nixA in Helicobacter pylori results in reduced nickel transport and urease activity Bauerfeind, P.;R. M. Garner;H. L. Mobley
- Ecotoxicol. Environ. Safety v.45 Microbial resistance to metals in the environment Bruins, M. R.;S. Kapil;F. W. Oehme https://doi.org/10.1006/eesa.1999.1860
- Microbial Infec. v.2 Bacterial urease in infectious diseases Burner, A. B.;Y.-Y. M. Chen. https://doi.org/10.1016/S1286-4579(00)00312-9
- Arch. Microbiol. v.173 Nickel transport system in microorganisms Eitinger, T.;M.-A. Mandrand-Berthelot https://doi.org/10.1007/s002030050001
- Microb. Pathogenesis v.22 Mutants in the CtpA copper transporting P-type ATPase reduce virulence of Listeria monocytogenes Francis, M. S.;C. J. Thomas https://doi.org/10.1006/mpat.1996.0092
- J. Bacteriol. v.182 A gene cluster involved in metal homeostasis in the cyanobacterium Synechocystis sp. strain PCC6803 Garcia-Dominguez, M.;L. Lopez-Maury;F. J. Florencio;J. C. Reyes https://doi.org/10.1128/JB.182.6.1507-1514.2000
- J. Bacteriol. v.183 NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance Grass, G.;B. Fan;B. P. Rosen;K. Lemke;H.-G. Schlegel;C. Rensing https://doi.org/10.1128/JB.183.9.2803-2807.2001
- J. Bacteriol. v.182 Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. strain CH34 Grass, G.;C. Grobe;D. H. Nies https://doi.org/10.1128/JB.182.5.1390-1398.2000
- J. Bacteriol. v.175 The Escherichia coli K-12 "wild types" W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels Jensen, K. F. https://doi.org/10.1128/jb.175.11.3401-3407.1993
- J. Microbiol. Biotechnol. v.9 Effect of AL072, a novel anti-Legionella antibiotic, on growth and cell morphology of Legionella pneumophila Kang, B. C.;J. H. Park;Y. S. Lee;J.-W. Suh;J.-H. Chang;C.-H. Lee
- Annu. Rev. Biochem. v.68 Inorganic polyphosphate: A molecule of many functions Kornberg, A.;N. N. Rao;D. Ault-Riche https://doi.org/10.1146/annurev.biochem.68.1.89
- J. Biol. Chem. v.272 Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in E. coli Kuroda, A.;H. Murphy;M. Cashel;A. Kornberg https://doi.org/10.1074/jbc.272.34.21240
- Acta Physiol. Scand. Suppl. v.163 Properties and functions of the P-type ion pumps cloned from Helicobacter pylori Melchers, K.;L. Herrmann;F. Mauch;D. Bayle;D. Heuermann;T. Weitzenegger;A. Schuhmacher;G. Aschs;R. Haas;G. Bode;K. Bensch;K. P. Schafer
- Microbiol. Mol. Biol. Rev. v.62 Major facilitator superfamily Pao, S. S.;I. T. Paulsen;M. H. saier, Jr.
- Gene v.179 Bacterial resistances to toxic metal ions - a review Silver, S. https://doi.org/10.1016/S0378-1119(96)00326-5
- J. Bacteriol. v.176 Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A Schmidt, T.;H. G. Schlegel https://doi.org/10.1128/jb.176.22.7045-7054.1994
- Appl. Environ. Microbiol. v.57 High-level nickel resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophus KTO2 Schmidt, T.;R.-D. Stoppel;H. G. Schlegel
- Biochemistry v.65 Inorganic polyphosphate kinase: Their novel biological functions and applications Shiba, T.;K. Tsutsumi;K. Ishige;T. Noguchi
- Appl. Environ. Microbiol. v.50 Effects of metals on Legionella pneumophila growth in drinking water plumbing systems States, S. J.;L. F. Conley;M. Ceraso;T. E. Stephenson;R. S. Wolford;R. M. Wadowsky;R. B. Yee
- Biochim. Biophys. Acta v.1493 Involvement of inorganic polyphosphate in expression of SOS genes Tsutsumi, K.;M. Munekata;T. Shiba https://doi.org/10.1016/S0167-4781(00)00165-2