Development of Anticosmic Shielded Ultra Low Background Gamma Spectrometer for Precise Measurement of Environmental Radioactivity

  • 발행 : 2002.12.01

초록

We developed an ultra low background gamma ray spectrometer particularly suitable for experiment which require lower detection limit. The background of a germanium spectrometer is suppressed by applying active and passive shielding technique at the same time. The active shielding devices consist of plastic scintillating plates of 50 mm thick and anti-coincidence electronic system. The shielding is made of 150 mm thick walls of very low activity lead,20 mm with activity of <10 Bq/kg and 130 mm with activity of <50 Bq/kg. The observed background count rates are 1.2 $s^{-1}$ and 0.36 $s^{-1}$ without and with the active shielding, respectively, overall the energy regions from 30 keV to 3 MeV The cosmic ray induced background is suppressed by a rate of 0.8 $s^{-1}$ at the present work. The detection efficiency curve necessary to obtain the radioactivity of environmental samples has been precisely determined on the energy regions from 80 to 2000 keV with a 10$^3$ ml marinelli beaker sample, consisting of the calibrated radionuclides $^{109}$ Cd, $^{57}$ CO, $^{139}$ Ce, $^{203}$ Hg, $^{113}$ Sn, $^{85}$Sr, $^{137}$ Cs, $^{60}$ Co and $^{88}$ Y. Virtues Of the method are demonstrated by measuring the activity of $^{137}$ Cs contained in the powdered milk.

키워드

참고문헌

  1. Lloyd A. Currie Limit for Qualitative Detaction and Qualitative Determination, Anal. Chem., 40(3), 586 (1968) https://doi.org/10.1021/ac60259a007
  2. G. Gilmore and J. Hemingway Practical Gamma Ray Spectrometry, John Wiley & Sons, New York (1995)
  3. R. L. Brodzinski, J. H. Reeves, F. T. Avignone III and H.S. Miley Achieving ultralow background in a germanium spectrometer J. Radioanal. Nucl. Chem. 124, 513 (1988) https://doi.org/10.1007/BF02041340
  4. Y. Bourlat, J.-C. Millies-Lacroix and D. Abt Measurement of low-level radioactivity in the Modane underground laboratory, Nucl. Instr. and Meth., A339, 309 (1994) https://doi.org/10.1016/0168-9002(94)91823-6
  5. D. Arnold, S. Neumaier and O. Sima Deep underground gamma spectrometric measurement of $^{26}Al$ in meteorite samples Appl. Radiat. Isot. 56, 405 (2002) https://doi.org/10.1016/S0969-8043(01)00222-6
  6. R. J. Arthur, J. H. Reeves Anticosmic-shielded ultralow-background germanium detector systems for analysis of bulk environmental sample, J. Radioanal. Nucl. Chem. 124(2), 435 (1988) https://doi.org/10.1007/BF02041334
  7. R. L. Brodzinski R. L. Low Level Gamma-ray Spectrometry, J. Phys. G17, S403 (1991) https://doi.org/10.1088/0954-3899/17/S/041
  8. F. Pointurier, J. Laurec, X. Blanchard and A. Adam Cosmic-ray Induced Background Reduction by Means of an Anticoincidence Shield, Appl. Radiat. Isot., 47(9), 1043 (1996) https://doi.org/10.1016/S0969-8043(96)00103-0
  9. G. Heusser, 'Cosmic ray-induced background in Ge-spectrometry,' Nucl. Instr. and Meth., B83, 223 (1993) https://doi.org/10.1016/0168-583X(93)95931-T
  10. G. Heusser Cosmic ray interaction study with low-level Ge-spectrometry, Nucl. Instr. and Meth., A369, 539 (1996) https://doi.org/10.1016/S0168-9002(96)80046-5
  11. R. Nunez-Lagos and A. Virto, Shielding and background reduction, Appl. Radiat. Isot., 47(9), 1011 (1996) https://doi.org/10.1016/S0969-8043(96)00100-5
  12. F.M. Cox and C.F. Gruenther, An industry survey of current lower limits of detection for various radionuclides Health Physics 69(1), 121 (1995) https://doi.org/10.1097/00004032-199507000-00014