A Micro Finite Element Analysis on Effects of Altering Monomer-to-Powder ]Ratio of Bone Cement During Vertebroplasty

골 시멘트 중합 비율 변경이 척추성형술 치료에 미치는 영향에 대한 비교 분석

  • 김형도 (건국대학교 의과대학 의학공학부) ;
  • 탁계래 (건국대학교 의과대학 의학공학부) ;
  • 김한성 (연세대학교 보건과학대학 의공학부)
  • Published : 2002.12.01

Abstract

Osteoporosis is a systemic skeletal disease caused by low bone mass and the decrease of bone density in the microstructure of trabecular bone. Drug therapy(PTH Parathyroid hormone) may increase the trabecular thickness and thus bone strength. Vertebroplasty is a minimally invasive surgery foy the treatment of osteoporotic vertebral compression fracture. This Procedure includes Puncturing vertebrae and filling with Polymethylmethacrylate(PMMA). Although altering recommended monomer-to-Powder ratio affects material properties of bone cement, clinicians commonly alter the mixture ratio to decrease viscosity and increase the working time. The Purposes of this study were to analyze the effect of 4he monomer-to-powder ratio on the mechanical characteristics of trabecular. In this paper, the finite element model of human vertebral trabecualr bone was developed by modified Voronoi diagram, to analyze the relative effect of hormone therapy and vertebroplasty at the treatment of osteoporotic vertebrae. Trabeuclar bone models for vertebroplasty with varied monomer-to-Powder ratio(0.40∼1.07 ㎖/g) were analyzed. Effective modulus and strength of bone cement-treated models were approximately 60% of those of intact models and these are almost twice the values of hormone-treated models. The bone cement models with the ratio of 0.53㎖/g have the maximum modulus and strength. For the ratio of 1.07㎖/g, the modulus and strength were minimum(42% and 49% respectively) but these were greater than those for drug therapy. This study shows that bone cement treatment is more effective than drug therapy. It is found that in vertebroplasty, using a monomer-to-powder ratio different from that recommended by manufacturer nay significantly not only reduce the cement's material Properties but also deteriorate the mechanical characteristics of osteoporotic vertebrae.

골다공증이란 골량의 감소에 의해 야기되며. 해면골 미세구조의 골밀도가 감소하는 질병이다. 약물치료(부갑상선 호르몬)법은 골소주의 두께 및 골의 강도를 어느 정도 증가시킬 수 있는 호르몬 치료법이다. 척추성형술은 골다공성 척추 압박 골절의 치료를 위하여 척추 해면골에 주사기를 통하여 골 시멘트를 주입하는 최소 침습적 수술법이다. 임상적으로 골 시멘트의 물성치에 영향을 미치더라도 점성 감소와 주입 시간 확보를 위해 중합비율을 변경하여 사용한다. 본 연구의 목적은 골 시멘트 중합비율 변경에 따른 척추 해면골의 역학적 특성을 알아보고자 한다. 본 논문에서 는 수정된 보로노이 도형을 이용하여 척추 해면골의 유한요소 모델을 생성하고, 골 시멘트의 중합비율(0.40~l.07$m\ell$/g)에 따른 척추 해면골의 강도회복 정도를 비교하였다. 또한 골다공증 치료에서 호르몬 치료와 골 시멘트 치료의 상대적인 영향을 비교 분석하였다. 분석결과 골 시멘트 치료모델의 탄성계수와 강도는 정상 상태의 약 50%로 회복되었으며, 이 값은 호르몬 치료 모델의 약 2배이다. 0.53$m\ell$/g의 중합비율에서 골 시멘트의 탄성계수와 강도가 최고이며 1.07$m\ell$/g의 중합비율에서 최소의 탄성계수와 강도(각각 42%와 49%)이지만 약물 치료보다는 더 효과적임을 알 수 있다. 척추성형술시 제작사에서 추천하는 중합비율과 다른 비율을 사용할 경우 골 시멘트의 물성치 감소뿐만 아니라 환자의 골 밀도에 따라서 해면골의 강도회복에 문제가 발생할 수 있다는 것을 알 수 있었다.

Keywords

References

  1. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 4th ed. R.D. Wasnich;Favus, M. J.(ed.)
  2. Clin Orthop v.372 Osteoporosis J.M. Lane;L. Russell;S.N. Khan https://doi.org/10.1097/00003086-200003000-00016
  3. Arch Intern Med v.149 Lifetime risks of hip, colles, or vertebral fracture and coronaty heart disease among white posmenopausal S.R. Cummings;D. M. Black;S.M. Rubin https://doi.org/10.1001/archinte.149.11.2445
  4. Bone v.13 The Epidemiology of Vertebral Osteoporosis J.A. Kanis;E.V. Closkey
  5. Dis Mon v.45 Management of osteoporosis P.D. Miller https://doi.org/10.1016/S0011-5029(99)90010-X
  6. Calcif Tissue Int v.43 Measurement of Anisotropic Vertebral Trabeuclar Bone Loss During Aging by Quantitative Image Analysis C. Bergot;A. Laval-Jeantet;F. Preteux;A. Meunier https://doi.org/10.1007/BF02571311
  7. Bone v.10 Sex Differences in Age-Related Loss of Vertebral Trabecular Bone Mass and Structure-Biomechanical consequences L. Mosekilde https://doi.org/10.1016/8756-3282(89)90074-4
  8. Bone v.16 Parathyroid Hormone Monotherapy and Cotherapy with Antiresorptive Agents Restore Vertebral Bone Mass and Strength in Aged Ovariectomized Rats M. Li;L. Mosekilde;C. H. Sogaard;J.S. Thomsen;T.J. Wronski
  9. Treatment with PTH peptides L. Mosekilde;J. Reeve;R. Marcus(ed.);D. Feldman(ed.);J. Kelsey(ed.)
  10. Bone v.21 Modeling the Mechanical Behavior of Vertebral Trabecular Bone: Effects of Age-Related Changes in Microstructure M.J. Silva;L.J. Gibson https://doi.org/10.1016/S8756-3282(97)00100-2
  11. Neurochirurgie v.33 Preliminary Note on the Treatment of Vertebral Angioma by Percutaneous Acrylic Vertebroplasty P. Gallibert;H. Deramond;P. Rosat;G.D. Le
  12. Spine v.25 Percutaneous Vertebroplasty for Pain Relief and Spinal Stabilization J.D. Barr;M.S. Barr;T.J. Lemley;R.M. Mccann https://doi.org/10.1097/00007632-200004150-00005
  13. Radiology v.199 Spinal Metastasis: Indications for and Results of Percutaneous Injection of Acrylic Surgical Cement A. Weill;J. Chiras;J. M. Simon;M. Rose;T, Sola-Martinez;E. Enkaoua
  14. Bone v.25 The Effect of Monomer-to-Powder Ratio on the Material Properties of Cranioplastic L.E. Jasper;H. Deramond;J.M. Mathis;S.M. Belkoff https://doi.org/10.1016/S8756-3282(99)00129-5
  15. Int. J. Mech. v.39 The Effects of Non-Periodic Microstructure and Defects on the Compressive Strength of Two-Dimensional Celluar Solids M.J. Silva;L.J. Gibson https://doi.org/10.1016/S0020-7403(96)00065-3
  16. Cellular Solids: Structure & Properties, Second Edition L.J. Gibson;M.F. Ashby
  17. KSME I. J. v.15 Prediction of Cement Volume for Vertebroplasty based on imaging and biomechanical results G.R. Tack;S.Y. Lee;S.J. Lee;B.J. Jun;D.H. Lim;J.W. Shin;J.K. Kim;K.C. Shin
  18. Trans Orthop Res Soc v.21 Computed Tomography-Based Finite Element Models Predict Failure Load and Location of Failure in Ver-tebral Slices M.J. Silva;T.M. Keaveny;W.C. Hayes