Influence of Cardiac Contraction and its Phase Angle with Coronary Blood flow on Atherosclerosis of Coronary Artery

심장의 수축운동과 관상동맥 혈류와의 위상차가 관상동맥 혈관의 동맥경화 민감성에 미치는 영향

  • 김민철 (서울대학교 기계항공공학부) ;
  • 이종선 (한동대학교 기계제어시스템공학부) ;
  • 김찬중 (서울대학교 기계항공공학부) ;
  • 권혁문 (연세대학교 흉부외과 세브란스병원)
  • Published : 2002.12.01

Abstract

Coronary arteries are subjected to very different flow conditions compared to other arteries in systemic blood circulation. We Performed a computational fluid dynamic research to investigate influence of such flow conditions in coronary arteries on development and progress of atherosclerosis in the same. The results showed big differences in the flow field of the coronary artery compared to the abdominal and femoral arteries. The coronary artery showed higher wall shear stresses due to the small vessel diameter. On the other hand, it showed only one vortex distal to the stenosis throat during a whole pulse cycle. However. several vortices were observed in the abdominal and femoral arteries in both proximal and distal sides of the stenosis throat The wall shear stresses and extent of recirculation area were increased with impedance phase angle increasing toward more negative values. Therefore, cardiac contraction and the negative impedance phase angle as large as -110。 may induce a flow field that accelerates atherosclerosis.

관상동맥은 체순환 동맥과 비교하여 매우 다른 유동조건을 갖는다. 본 연구에서는 이러한 관상동맥의 유동조건이 다른 혈관과 비교하여 동맥경화의 생성과 발전에 어떤 영향을 미치는지를 협착된 혈관 모델의 혈류역학적 전산유체해석을 통해 분석하였다. 연구 결과, 협착된 관상동맥 모델의 유동장과 벽면전단응력의 분포는 복부 대동맥 및 고동맥과 비교하여 큰 차이점을 보였다. 관상동맥은 혈관 지름이 혈류량에 비해 상대적으로 작으므로 큰 벽면전단응력값을 보이는 반면에, 혈관 협착부 목 후방부에 하나의 보텍스만 보이는 단순한 유동장 분포를 보였다. 한편, 복부대동맥과 고동맥 모델은 협착부 목 전반부와 후방부에 여러 개의 보텍스를 나타내는 복잡한 유동장을 형성하였다. 관상동맥 모델에서는 임피던스 페이즈앵글이 음의 큰 값을 가질 때에 벽면전단응력의 크기가 증가하고 재순환영역이 증가함이 관찰되었다. 그러므로 심장의 수축운동과 -110。에 이르는 관상동맥의 큰 음의 임피던스 페이즈앵글 값은 동맥경화를 촉진시키는 유동환경을 조성함을 알 수 있었다.

Keywords

References

  1. ASME Journal of Biomechanical Engineering v.102 The role of fluid mechanics in atherogenesis R.M. Nerem;J. F. Cornhill https://doi.org/10.1115/1.3149571
  2. Critical Reviews in Biomedical Engineering v.19 Biofluid dynamics of arterial bifurcations Z. Lou;W.J. Yang
  3. Arteriosclerosis v.5 Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress D.N. Ku;D.P. Giddens;C.K. Zarins;S. Glagov https://doi.org/10.1161/01.ATV.5.3.293
  4. ASME Journal of Biomechanical Engineering v.119 Wall shear stress distribution in an abdominal aortic bifurcation model: effects of vessel compliance and phase angle between pressur and flow waveforms C.-S. Lee;J.M. Tarbell https://doi.org/10.1115/1.2796098
  5. Annals of Biomedical Engineering v.26 Influence of vasoactive drugs on wall shear stress distribution in a compliant model of abdominal aortic bifurcation C.-S. Lee;J.M. Tarbell
  6. J. Korean Biomedical Research v.21 Influence of wall motion and impedance phase angle on the wall shear stress in an elastic blood vessel under oscillatory flow conditions J.H. Choi;C.S. Lee;C.J. Kim
  7. Human Physiology and Mechanisms of Disease. 4th ed. A.C. Guyton
  8. Cardiovascular Biomechanics K.B. Chandran
  9. Cardiovascular Research v.16 Aortic input impedance in normal man and arterial hypertension; its modifications during changes in aortic pressure J.P. Merillon;G.J. Fontenier;J.F. Lerallut;M.Y. Jaffrin;G. A. Motte;C.P. Genain;R.R. Gourgon https://doi.org/10.1093/cvr/16.11.646
  10. KSME annual fall conference Flow Comparison between stenosed coronary and abdominal arteries M.C. Kim;C.S. Lee;C.J. Kim
  11. Yonsei Medical Journal v.39 Computed numerical analysis of the biomechanical effects on coronary atherogenesis using human hemodynamic and dimensional variables B.K. Lee;H.M. Kwon;D. Kim;Y.W. Yoon;J.K. Seo;I.J. Kim etal.
  12. Advances in Bioengineering v.107 Effect of the non-Newtonian viscosity of blood on hemodynamics of diseased arterial flows Y.I. Cho;K.R. Hensey
  13. expeimental-based numerical simulation of unsteady viscous flow in stenotic collapsible tubes Applied Numerical Mathematics v.36 D. Tang;C. Yang;S. Kobayashi;D. N. Ku