DOI QR코드

DOI QR Code

Physical Characteristics of 3C-SiC Thin-films Grown on Si(100) Wafer

Si(100) 기판 위에 성장돈 3C-SiC 박막의 물리적 특성

  • ;
  • ;
  • Shigehiro Nishino (Dpt. Of Electronics & Information Science Kyoto Institute of Technology)
  • 정귀상 (동서대학교 정보시스템공학부) ;
  • 정연식 (동서대학교 정보시스템공학부) ;
  • Published : 2002.11.01

Abstract

Single crystal 3C-SiC (cubic silicon carbide) thin-films were deposited on Si(100) wafer up to the thickness of 4.3 ${\mu}{\textrm}{m}$ by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane; {CH$_{3}$$_{6}$ Si$_{2}$) at 135$0^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC film was 4.3 ${\mu}{\textrm}{m}$/hr. The 3C-SiC epitaxial film grown on Si(100) wafer was characterized by XRD (X-ray diffraction), AFM (atomic force microscopy), RHEED (reflection high energy electron diffraction), XPS (X-ray photoelecron spectroscopy), and Raman scattering, respectively. Two distinct phonon modes of TO (transverse optical) near 796 $cm^{-1}$ / and LO (longitudinal optical) near 974$\pm$1 $cm^{-1}$ / of 3C-SiC were observed by Raman scattering measurement. The heteroepitaxially grown film was identified as the single crystal 3C-SiC phase by XRD spectra (2$\theta$=41.5。).).

Keywords

References

  1. Appl. Phys. Lett. v.78 no.2 Moncrystalline silicon carbide nanoelectromechanical systems Y. T. Yang;K. L. Ekinci;X. M.H. Huang;L. M. Schiavone;M. L. Roukes https://doi.org/10.1063/1.1339262
  2. Mater. Sci. Eng. v.B61 Heteroepitaxial growth of 3C-SiC on SOI for sensor applications G. Krotz;H. Moller;M. Eickhoff;S. Ziermann;E. Obermeier;J. Stoemenos
  3. Sensors & Actuators A v.40 Preparation of polycrystalline SiC films for sensors used at high temperature T. Homma;K. Kamimura;H. Y. Cai;Y. Onuma https://doi.org/10.1016/0924-4247(94)85011-9
  4. J. of KIEEME(in Korean) v.13 no.5 The fabrication of a SDB SOI substrate by electrochemical etch-stop G. S. Chung;K. D. Kang
  5. Appl. Surf. Sci. v.159 Epitaxial growth of 3C-SiC films on Si substrate by triode plasma CVD using dimenthlysilane K. Yasui;K. Asada;T. Akakane https://doi.org/10.1016/S0169-4332(00)00047-7
  6. J. of KIEEME(in Korean) v.4 no.4 A study on chemical vapor deposition process for the preparation of the thin SiC films J. H. Ko;S. I. Woo
  7. J. of KIEEME(in Korean) v.13 no.10 Investigation of annealing effect for a SiC : H thin films deposited by plasma enhanced chemical vapor deposition M. G. Park;Y. T. Kim;W. S. Choi;D. H. Yoo;B. Y. Hong
  8. Thin Solid Films v.369 SiC/Si heteroepitaxial growth M. Kitabatake https://doi.org/10.1016/S0040-6090(00)00819-1
  9. Mater. Sci. Eng. v.B61 CVD growth of 3C-SiC on SOI(100) substrate with optimized interface structure F. Wischmeyer;W. Wondark;D. Leidich;E. Niemann
  10. J. Alloys & Compounds v.286 XPS and XRD study of crystalline 3C-SiC grown by sublimation R. J. Iwanowski;K. Fronc;W. Paszkowicz;M. Heinonen https://doi.org/10.1016/S0925-8388(98)00994-3
  11. Surf. Sci. v.493 Growth of 3C-SiC (100) thin films on Si(100) by the molecular ion beam deposition T. Matsumoto;M. Kiushi;S. Sugimoto;S. Goto https://doi.org/10.1016/S0039-6028(01)01249-3
  12. J. Cryst. Growth v.211 X-ray photoelectron spectroscopy investigation of surface pretreatments for diamond nucleation by microwave plasma chemical vapor deposition M. J. Chiang;M. H. Hon https://doi.org/10.1016/S0022-0248(99)00769-1
  13. Surf. & Coat. Tech. v.131 High vacuum chemical vapor deposition of cubic SiC thin films on Si(100) substrates using sing source precursor J. H. Boo;S. B. Lee;K. S. Yu;M. M. Sung;Y. Kim https://doi.org/10.1016/S0257-8972(00)00820-3
  14. J. Appl. Phys. v.64 Raman scattering studies of chemical-vapor-deposited cubic SiC films of (100)Si Z. C. Feng;A. J. Mascarenhas;W. J. Choyke;J. A. Powell https://doi.org/10.1063/1.341533