Distribution Characteristics of Data Retention Time Considering the Probability Distribution of Cell Parameters in DRAM

  • 이경호 (홍익대학교, 과학기술대학, 전자전기컴퓨터공학부) ;
  • 이기영 (충북대학교, 공과대학, 전기전자공학부)
  • 발행 : 2002.04.01

초록

DRAM에서 셀 파라메터들의 확률 분포를 고려하여 데이터 보유 시간에 대한 분포 특성을 계산하였다. 셀 파라메터와 셀 내부 전압의 과도 특성으로부터 데이터 보유 시간의 식을 유도하였다. 접합 공핍 영역에서 발생하는 누설 전류의 분포 특성은 재결합 트랩의 에너지 분포로, 셀 캐패시턴스 분포 특성은 유전체 성장에서 표면 반응 에너지의 분포 특성으로, 그리고 sense amplifer의 감도를 각각의 독립적인 확률 변수로 보고, monte carlo 시뮬레이션을 이용하여, 셀 파라메터 값들의 확률적 분포와, DRAM 셀들의 데이터 보유 시간에 대하여cumulative failure bit의 분포함수를 계산하였다 특히 sense amplifier의 감도 특성이 데이터 보유 시간 분포의 tail bit에 상당히 영향을 미침을 보였다.

The distribution characteristics of data retention time for DRAM was studied in connection with the probability distribution of the cell parameters. Using the cell parameters and the transient characteristics of cell node voltage, data retention time was investigated. The activation energy for dielectric layer growth on cell capacitance, the recombination trap energy for leakage current in the junction depletion region, and the sensitivity characteristics of sense amplifier were used as the random variables to perform the Monte Carlo simulation, and the probability distributions of cell parameters and distribution characteristics of cumulative failure bit on data retention time in DRAM cells were calculated. we found that the sensitivity characteristics of sense amplifier strongly affected on the tail bit distribution of data retention time.

키워드

참고문헌

  1. T. Hamamto, S. Sugiura, and S. Sawada, 'Well concentration : A novel scaling limitation factor derived from DRAM retention time and its modeling,' IEDM Tech. Dig., pp. 915-918, 1995 https://doi.org/10.1109/IEDM.1995.499365
  2. A. Hiraiwa, M. Ogasawara, N. Natusaki, Y. Itoh, and H. Iwai, 'Statistical modeling of dynamic random access memory data retention characteristics,' J. of Appl. Phys., Vol. 80, pp. 3091-3099, 1996 https://doi.org/10.1063/1.363119
  3. A. Hiraiwa, M. Ogasawara, N. Natsuaki, Y. Itoh, and H. Iwai, 'Field-effect trap-level-distribution model of dynamic random access memory data retention characteristics,' J. of Appl. Phys., Vol.81, pp.7053-7060, 1997 https://doi.org/10.1063/1.365227
  4. Steven A. Przybylski, New DRAM Technologies, Microdesign Resources, Sebastopol, USA
  5. Ashok K. Sharma, Semiconductor Memories, IEEE Press, Piscataway, USA
  6. S. Ueno, T. Yamashita, H. Oda, S. Komori, Y. Inoue, and T. Nishimura, 'Leakage current observation on irregular local PN junctions forming the tail distribution of DRAM retention characteristics with new test structure,' IEDM Tech Dig., pp. 153-156, 1998
  7. H. Shin, 'Modeling of alpha-particle-induced soft error rate in DRAM,' IEEE Trans. Electron Devices, Vol. 46, pp. 1850-1857, 1999 https://doi.org/10.1109/16.784184
  8. R. H. Fowler and L. W. Nordheim, 'Electron emission in intense electric fields,' Proc. Royal Soc. A, Vol. 119, pp. 173-181, 1928 https://doi.org/10.1098/rspa.1928.0091
  9. S. Wolf and R. N. Tauber, Silicon Processing for the VLSI era vol. 1, Lattice Press, USA
  10. B. E. Deal and A. S. Grove, 'General relationship for the thermal oxidation of silicon,' J. Appl. Phys., Vol. 36, pp. 3770-3779, 1995 https://doi.org/10.1063/1.1713945
  11. R. V. Hogg and E. A. Tanis, Probability and Statistical Inference, Macmillan, USA
  12. J. A. Pals, 'Properties of Au, Pt, Pd and Rh levels in silicon measured with a constant capacitance technique,' Solid-State Electron, Vol. 17, pp. 1139-1145, 1974 https://doi.org/10.1016/0038-1101(74)90157-9