Browse > Article

Distribution Characteristics of Data Retention Time Considering the Probability Distribution of Cell Parameters in DRAM  

Lee, Gyeong-Ho (홍익대학교, 과학기술대학, 전자전기컴퓨터공학부)
Lee, Gi-Yeong (충북대학교, 공과대학, 전기전자공학부)
Publication Information
Abstract
The distribution characteristics of data retention time for DRAM was studied in connection with the probability distribution of the cell parameters. Using the cell parameters and the transient characteristics of cell node voltage, data retention time was investigated. The activation energy for dielectric layer growth on cell capacitance, the recombination trap energy for leakage current in the junction depletion region, and the sensitivity characteristics of sense amplifier were used as the random variables to perform the Monte Carlo simulation, and the probability distributions of cell parameters and distribution characteristics of cumulative failure bit on data retention time in DRAM cells were calculated. we found that the sensitivity characteristics of sense amplifier strongly affected on the tail bit distribution of data retention time.
Keywords
Semiconductor; DRAM; Cumulative failure bit;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. V. Hogg and E. A. Tanis, Probability and Statistical Inference, Macmillan, USA
2 A. Hiraiwa, M. Ogasawara, N. Natusaki, Y. Itoh, and H. Iwai, 'Statistical modeling of dynamic random access memory data retention characteristics,' J. of Appl. Phys., Vol. 80, pp. 3091-3099, 1996   DOI   ScienceOn
3 T. Hamamto, S. Sugiura, and S. Sawada, 'Well concentration : A novel scaling limitation factor derived from DRAM retention time and its modeling,' IEDM Tech. Dig., pp. 915-918, 1995   DOI
4 H. Shin, 'Modeling of alpha-particle-induced soft error rate in DRAM,' IEEE Trans. Electron Devices, Vol. 46, pp. 1850-1857, 1999   DOI   ScienceOn
5 B. E. Deal and A. S. Grove, 'General relationship for the thermal oxidation of silicon,' J. Appl. Phys., Vol. 36, pp. 3770-3779, 1995   DOI
6 A. Hiraiwa, M. Ogasawara, N. Natsuaki, Y. Itoh, and H. Iwai, 'Field-effect trap-level-distribution model of dynamic random access memory data retention characteristics,' J. of Appl. Phys., Vol.81, pp.7053-7060, 1997   DOI   ScienceOn
7 Steven A. Przybylski, New DRAM Technologies, Microdesign Resources, Sebastopol, USA
8 Ashok K. Sharma, Semiconductor Memories, IEEE Press, Piscataway, USA
9 S. Ueno, T. Yamashita, H. Oda, S. Komori, Y. Inoue, and T. Nishimura, 'Leakage current observation on irregular local PN junctions forming the tail distribution of DRAM retention characteristics with new test structure,' IEDM Tech Dig., pp. 153-156, 1998
10 R. H. Fowler and L. W. Nordheim, 'Electron emission in intense electric fields,' Proc. Royal Soc. A, Vol. 119, pp. 173-181, 1928   DOI
11 S. Wolf and R. N. Tauber, Silicon Processing for the VLSI era vol. 1, Lattice Press, USA
12 J. A. Pals, 'Properties of Au, Pt, Pd and Rh levels in silicon measured with a constant capacitance technique,' Solid-State Electron, Vol. 17, pp. 1139-1145, 1974   DOI   ScienceOn