Development of a Flow Injection Analysis Technique for On-line Monitoring of Xylitol Concentrations

자일리톨 농도의 온라인 모니터링을 위한 흐름주입분석기술 개발

  • 이종일 (전남대학교 응용화학공학부, 생물공정기술연구실)
  • Published : 2002.08.01

Abstract

Flow injection analysis technique for monitoring of xylitol concentrations in biological processes has been developed using xylitol oxidase (XYO) immobilized on VA-Epoxy Biosynth carrier. The immobilized XYO cartridge has been integrated into a FIA system with an oxygen electrode and systematically investigated with regards to the factors which can affect the activity of the immobilized XYO, such as pH, temperature, salt concentration etc. The activity of the immobilized XYO increased with the temperature ($19.0 - 29.0^{circ}C$) and sample injection volume ($75-250\muL$) and molarity of potassium phosphate buffer (0.1-1 M), but it reached the highest value at pH 8.5. The XYO-FIA system has been also applied for on-line monitoring of xylitol concentrations in a reactor and showed good operational stability and agreement with off-line data measured with HPLC.

Keywords

References

  1. Parajo, J. C, H. Dominguez, and J. M. Dominguez (1996), Xylitol from wood: study of some operational strategies, Food Chem. 57, 531-535 https://doi.org/10.1016/S0308-8146(96)00012-X
  2. Silva, S. S., L. C. Roberto, M. G. A. Felipe, and I. M. Mancilha (1996), Batch fermentation of xylose for xylitol production in stirred tank bioreactor, Proc. Biochem. 31, 549-553 https://doi.org/10.1016/S0032-9592(96)00002-7
  3. Vandeska, E., S. Amartey, S. Kuzmanova, and T. W. Jeffries (1996), Fed-batch culture for xylitol production by Candida boidinii, Proc. Biochem. 31, 265-270 https://doi.org/10.1016/0032-9592(95)00058-5
  4. Azuma, M., T. Ikeuchi, R. Kiritani, J. Kato, and H. Ooshima (2000),Increase in xylitol production by Candida tropicalis upon addition of salt, Biomass Bioenergy, 19, 129-135 https://doi.org/10.1016/S0961-9534(00)00025-8
  5. Walther, T., P. Hensirisak, and F. A. Agblevor (2001),The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis, Biores. Technol. 76, 213-220 https://doi.org/10.1016/S0960-8524(00)00113-9
  6. Neuhauer, W., M. Steininger, D. Haltrich, K. D. Kulbe, and B. Nidetzky (1998), A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration, Biotechnol. Bioeng. 60, 277-282 https://doi.org/10.1002/(SICI)1097-0290(19981105)60:3<277::AID-BIT2>3.0.CO;2-E
  7. Parajo, J. C., H. Dominguez, and J. M. Dominguez (1998), Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis, Biores. Technol. 65, 191-201 https://doi.org/10.1016/S0960-8524(98)00038-8
  8. Preziosi-Belloy, L., V. Nolleau, and J. M. Navarro (1997), Fermentation of hemicellulosic sugars and sugar mixtures to xylitol by Candida parapsilosis, Enzyme. Microb. Technol. 21, 124-129 https://doi.org/10.1016/S0141-0229(96)00247-5
  9. Felipe, M. G. A., M. Vitolo, I. M. Mancila, and S. S. Silva (1997),Fermentation of sugar cane bagasse hemicellulosic hydrolysate for xylitol production: Effect of pH, Biomass and Bioenergy, 13, 11-14 https://doi.org/10.1016/S0961-9534(97)00032-9
  10. Converti, A., P. Perego, P. Torre, and S. Silverio da Silva (2000), Mixed inhibitions by methanol, furfural and acetic acid on xylitol production by Candida guilliermondii, Biotechnol. Lett. 22, 1861-1865 https://doi.org/10.1023/A:1005605210325
  11. Snachez, S., V. Bravo, E. Castro, A. J. Moya, and F. Camacho (1998), The production of xylitol from D -xylose by fermentation with Hansenula polymorpha, Appl. Microb. Biotechnol. 50, 608-611 https://doi.org/10.1007/s002530051343
  12. Yamashita, M., H. Omura, E. Okamoto, Y. Furuya, M. Yabuuchi, K. Fukai, and Y. Murooka (2000), Isolation, characterization, and molecular cloning of a thermostable xylitol oxidase from Streptomyces sp. IKD472, J Biosci. Bioeng. 89, 350-360 https://doi.org/10.1016/S1389-1723(00)88958-6
  13. JUrgens, H., R. Kabuss, T. Plunbaum, B. Weigel, G. Kretzmer, K. SchUgerl, K. Andres, E. Ignazek, and F. Giffhom. (1994), Development of enzyme-cartridge flowinjection analysis for industrial process monitoring ; Part I. development and characterization, Anal. Chim. Acta, 298, 141-149. https://doi.org/10.1016/0003-2670(94)00264-9
  14. Burfeind, J., B. Weigel, G. Kretzmer, K. SchUgerl, A. Huwig, and F. Giffhom (1996), Determination of the concentration of higher alcohols with enzyme coupled flow-injection analysis in model systems, Anal. Chim. Acta, 322, 131-139 https://doi.org/10.1016/0003-2670(95)00610-9
  15. Rhee, J. I., and K. SchUgerl (1997), The influence of metabolites on enzyme based flow injection analysis, Anal. Chim. Acta, 355, 55-62 https://doi.org/10.1016/S0003-2670(97)81611-X
  16. Keay, P. J. and Y. Wang (1997), Applications of flow injection analysis to analytical biotechnology. TlBTECH, 15, 76 https://doi.org/10.1016/S0167-7799(97)84207-2
  17. Rodrigues, D. C. G. A., S. S. Da Silva, and M. G. A. Felipe (1999), Fed-batch culture of Candida guilliermondii FTI 20037 for xylitol production from sugar cane bagasse hydrolysate, Lett. Appl. Microbiol. 29, 359-363 https://doi.org/10.1046/j.1472-765X.1999.00639.x
  18. Oh, D.-K., S.-Y. Kim, and J.-H. Kim (1998), Increase of xylitol production rate by controlling redox potential in Candida parapsilosis, Biotechnol. Bioeng. 58, 440-444 https://doi.org/10.1002/(SICI)1097-0290(19980520)58:4<440::AID-BIT11>3.0.CO;2-F
  19. SchUgerl, K. (1993),Which requirements do flow injection analyzer/biosensor systems have to meet for controlling the bioprocess? J. Biotechnol. 31, 241-250. https://doi.org/10.1016/0168-1656(93)90071-T
  20. Kim, J. -H, D. -H. Park, and J. I. Rhee (2001), On-line monitoring of glucose and starch by a flow injection analysis technique, Kor. J. Biotechnol. Bioeng. 16(5), 459-465