DOI QR코드

DOI QR Code

Novel Copper(Ⅱ)-Selective Senor Based on a New Hexadentates Schiff's Base

  • 발행 : 2002.10.20

초록

A novel copper(II) membrane electrode based on diphenylisocyanate bis(acetylacetone) ethylenediimine (DIBAE), as a new hexadentates Schiff's base was prepared. The electrode exhibited a Nernstian response for Cu$^{2+}$ ions over a wide concentration range (1.0 ${\times}$ 10$^{-1}$ to 1.0 ${\times}$ l0$^{-6}$ M) with a limit of detection of 6.0 ${\times}$ 10$^{-7}$ M (39 ppb). The sensor shows a fast response time (15s) and the membrane can be used for more than 4 months without observing any major deviation. The electrode revealed very good selectivity with respect to many cations including alkali, alkaline earth, transition and heavy metal ions. The proposed sensor could be used in a pH range of 3.0-7.5. It was applied to the direct potentiometric determination of copper in black tea, and in wastewater of copper electroplating samples. The electrode was also used in potentiometric titration of the copper(II) ion with EDTA.

키워드

참고문헌

  1. Moody, G. J.; Saad, B. B.; Thomas, J. D. R. Sel. Electrode Rev. 1988, 10, 71.
  2. Kamata, S.; Yamasaki, Y.; Higo, M.; Bhale, A.; Fukanaga, Y. Analyst 1988, 113, 45. https://doi.org/10.1039/an9881300045
  3. Casabo, J.; Mestres, L.; Escriche, L.; Texidor, F.; Perez-Jimenez, C. J. Chem. Soc., Dalton. Trans. 1991, 1961.
  4. Kamata, S.; Bahale, A.; Funkanaga, Y.; Murata, H. Anal. Chem. 1988, 60, 2464. https://doi.org/10.1021/ac00173a006
  5. Kamata, S.; Murata, H.; Kubo, Y.; Bhale, A. Analyst 1989, 114, 1029. https://doi.org/10.1039/an9891401029
  6. Brzozka, Z. Analyst 1988, 113, 1803. https://doi.org/10.1039/an9881301803
  7. Cobben, P. L. H. M.; Egherink, R. J. M.; Bohmer, J. B.; Bergveld, P.; Verboom, W.; Reinhoudt, D. N. J. Am. Chem. Soc. 1992, 114, 10573. https://doi.org/10.1021/ja00052a063
  8. Ren, K. Talanta 1989, 113, 1803.
  9. Fakhari, A. R.; Ganjali, M. R.; Shamsipur, M. Anal. Chem. 1997, 69, 3693. https://doi.org/10.1021/ac970133b
  10. Javanbakht, M.; Ganjali, M. R.; Eshghi, H.; Sharghi, H.; Shamsipur, M. Electroanalysis 1999, 11, 81. https://doi.org/10.1002/(SICI)1521-4109(199902)11:2<81::AID-ELAN81>3.0.CO;2-Q
  11. Shamsipur, M.; Yousefi, M.; Ganjali, M. R. Anal. Chem. 2000, 72, 2391. https://doi.org/10.1021/ac991155w
  12. Shamsipur, M.; Ganjali, M. R.; Rouhollahi, A. Anal. Sci. 1999, 17, 935.
  13. Javanbakht, M.; Shabani-Kia, A.; Darvich, M. R.; Ganjali, M. R.; Shamsipur, M. Anal. Chim. Acta 2000, 408, 75. https://doi.org/10.1016/S0003-2670(99)00771-0
  14. Ganjali, M. R.; Fathi, M. R.; Pirelahi, H. Electroanalysis 2000, 12, 1138. https://doi.org/10.1002/1521-4109(200010)12:14<1138::AID-ELAN1138>3.0.CO;2-X
  15. Ganjali, M. R.; Hosseini, M.; Javanbakht, M.; Hashemi, O. R. Anal. Lett. 2000, 33, 3139. https://doi.org/10.1080/00032719.2000.10399491
  16. Ganjali, M. R.; Moghimi, A.; Shamsipur, M. Anal. Chem. 1998, 70, 5259. https://doi.org/10.1021/ac980340r
  17. Shamsipur, M.; Rouhani, S.; Ganjali, M. R.; Eshghi, H.; Sharghi, H. Sensor and Actuators B 1999, 59, 30. https://doi.org/10.1016/S0925-4005(99)00160-4
  18. Martell, A. E.; Belford, R. L.; Calvin, M. J. Inorg. Nucl. Chem. 1986, 5, 170. https://doi.org/10.1016/0022-1902(58)80127-X
  19. Darbieu, M. H.; Cros, G.; Laurent, J. P. Polyhedron 1986, 5, 711. https://doi.org/10.1016/S0277-5387(00)84425-3
  20. Kamata, S.; Bhale, A.; Fukanaga, Y.; Murata, A. Anal. Chem. 1998, 60, 2464.
  21. Hasani, M.; Shamsipur, M. J. Solution Chem. 1994, 23, 315.
  22. Shamsipur, M.; Ganjali, M. R. J. Inclus. Phenom. 1997, 28, 315. https://doi.org/10.1023/A:1007944213840
  23. Ammann, D.; Pretsch, E.; Simon, W.; Lindner, E.; Bezegh, A.; Pungor, E. Anal. Chim. Acta 1991, 171, 1380.
  24. Yang, X.; Kumar, N.; Chi, H.; Hibbert, D. B.; Alexander, P. W. Electroanalysis 1997, 9, 549. https://doi.org/10.1002/elan.1140090709
  25. Gehring, P. M.; Morf, W. E.; Welti, M.; Pretsch, E.; Simon, W. Helv. Chim. Acta 1990, 73, 203. https://doi.org/10.1002/hlca.19900730124
  26. Shamsipur, M.; Rouhani, S.; Sharghi, H.; Ganjali, M. R.; Eshghi, H. Anal. Chem. 1999, 71, 4839.
  27. Umezawa, Y.; Umezawa, K.; Sato, H. Pure Appl. Chem. 1995, 67, 507. https://doi.org/10.1351/pac199567030507
  28. Pournaghi-Azar, M. H.; Farajnia, F. Microchem. J. 1999, 63, 285. https://doi.org/10.1006/mchj.1999.1792

피인용 문헌

  1. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors vol.8, pp.3, 2008, https://doi.org/10.3390/s8031645
  2. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade vol.8, pp.4, 2008, https://doi.org/10.3390/s8042331
  3. Development of an electrochemical sensor based on Schiff base for Cu(II) determination at nano level in river water and edible materials vol.89, pp.15, 2009, https://doi.org/10.1080/03067310902719167
  4. Sensors for Corrosion Detection: Measurement of Copper Ions in 3.5% Sodium Chloride Using Screen-Printed Platinum Electrodes vol.12, pp.6, 2012, https://doi.org/10.1109/JSEN.2012.2183867
  5. Coated wire lead(II)-selective electrode based on a Schiff base ionophore for low concentration measurements vol.143, pp.2, 2012, https://doi.org/10.1007/s00706-011-0634-z
  6. Solid-state Cu (II) ion-selective electrode based on polyaniline-conducting polymer film doped with copper carmoisine dye complex vol.16, pp.3, 2012, https://doi.org/10.1007/s10008-011-1436-2
  7. Label-free selective impedimetric detection of Cu2+ ions using catalytic DNA vol.138, pp.7, 2013, https://doi.org/10.1039/c3an36778a
  8. Cesium selective polymeric membrane sensor based on p-isopropylcalix[6]arene and its application in environmental samples vol.5, pp.49, 2015, https://doi.org/10.1039/C5RA02799C
  9. and its application in imaging of living cells vol.16, pp.9, 2017, https://doi.org/10.1039/C7PP00182G
  10. Microneedle Copper (II) Selective Electrode based on Polypyrrole Doped with 8-Hydroxyquinoline-5-Sulfonic Acid vol.162, pp.3, 2015, https://doi.org/10.1149/2.0371503jes
  11. Determination of copper(II) in wastewater by electroplating samples using a PVC-membrane copper(II)-selective electrode vol.62, pp.11, 2007, https://doi.org/10.1134/S1061934807110135
  12. Facile Synthesis and Characterization of 5-[(3-Methylthiophene-2-yl-methyleneamino)]-2-mercaptobenzimidazole and Its Potentiometric Sensor Application in a Polyvinyl Chloride Membrane for the Determination of Copper(II) pp.1532-236X, 2018, https://doi.org/10.1080/00032719.2018.1543700
  13. Electrochemical Sensors Containing Schiff Bases and their Transition Metal Complexes to Detect Analytes of Forensic, Pharmaceutical and Environmental Interest. A Review pp.1547-6510, 2019, https://doi.org/10.1080/10408347.2018.1561242
  14. Crystal Structures and Characterization of Copper(II) Complexes of N,N,N'N'-Tetrakis(2-pyridylmethyl)-1,2-ethanediamine vol.25, pp.6, 2002, https://doi.org/10.5012/bkcs.2004.25.6.796
  15. La(III) Selective Membrane Sensor Based on a New N-N Schiff's Base vol.26, pp.1, 2002, https://doi.org/10.5012/bkcs.2005.26.1.038
  16. Novel Triiodide PVC-Based Membrane Sensor Based on a Charge Transfer Complex of Iodine and Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone vol.26, pp.11, 2005, https://doi.org/10.5012/bkcs.2005.26.11.1738
  17. Zn2+ PVC-based Membrane Sensor Based on 3-[(2-Furylmethylene)amino]-2-thioxo-1,3-thiazolidin-4-one vol.26, pp.4, 2005, https://doi.org/10.5012/bkcs.2005.26.4.579
  18. Lead(II)-selective Polymeric Electrode Using a Schiff Base Complex of N,N'-Bis-thiophene-2-ylmethylene-ethane-1,2-diamine as an Ion Carrier vol.26, pp.8, 2002, https://doi.org/10.5012/bkcs.2005.26.8.1219
  19. A lead(II)-selective PVC membrane based on a Schiff base complex of N,N’-bis(salicylidene)-2,6-pyridinediamine vol.65, pp.2, 2002, https://doi.org/10.1016/j.talanta.2004.07.016
  20. Highly Selective and Sensitive Copper(II) Membrane Sensors Based on 6-Methyl-4-(1-phenylmethylidene)amino-3-thioxo-1,2,4-triazin-5-one as a New Neutral Ionophore vol.17, pp.24, 2002, https://doi.org/10.1002/elan.200503356
  21. Sub-Micro Molar Monitoring of La3+ by a Novel Lanthanum PVC-Based Membrane Sensor Based on 3-Hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide vol.27, pp.10, 2002, https://doi.org/10.5012/bkcs.2006.27.10.1581
  22. Novel Tm(III) Membrane Sensor Based on 2,2'-Dianiline Disulfide and Its Application for the Fluoride Monitoring of Mouth Wash Preparations vol.27, pp.9, 2006, https://doi.org/10.5012/bkcs.2006.27.9.1418
  23. Determination of Copper in Black, Red Pepper and the Waste Water Samples by a Highly Selective Sensitive Cu(II) Microelectrode Based on a New Hexadentates Schiff's Base vol.27, pp.9, 2002, https://doi.org/10.5012/bkcs.2006.27.9.1439
  24. Selective electrochemical sensor for copper (II) ion based on chelating ionophores vol.575, pp.1, 2002, https://doi.org/10.1016/j.aca.2006.05.076
  25. Highly selective and sensitive chromium(III) membrane sensors based on 4-amino-3-hydrazino-6-methyl-1,2,4-triazin-5-one as a new neutral ionophore vol.119, pp.1, 2002, https://doi.org/10.1016/j.snb.2005.11.048
  26. Construction of a highly selective PVC-based membrane sensor for Ce(III) ions vol.120, pp.2, 2007, https://doi.org/10.1016/j.snb.2006.03.013
  27. A rapid and selective carbon composite platinum coated electrode for determination of copper ion in real samples vol.2, pp.10, 2002, https://doi.org/10.1039/c0ay00268b
  28. Poly(vinyl) chloride membrane copper-selective electrode based on 1-phenyl-2-(2-hydroxyphenylhydrazo)butane-1,3-dione vol.186, pp.2, 2002, https://doi.org/10.1016/j.jhazmat.2010.11.119
  29. Novel Copper(II)-Selective Potentiometric Sensor Based on a Folic Acid-Functionalized Carbon Nanotube Material vol.52, pp.16, 2019, https://doi.org/10.1080/00032719.2019.1617300