DOI QR코드

DOI QR Code

Increased Anticancer Activity by the Surfated Funcoidan from Korean Brown Seaweeds

한국산 길조류에서 추출한 Fucoidan의 황산기에 따른 항암작용

  • 박장수 (부산대학교 자연과학대학 화학과) ;
  • 김안드레 (부산대학교 자연과학대학 화학과) ;
  • 김은희 (부산대학교 자연과학대학 화학과) ;
  • 서홍숙 (부산대학교 자연과학대학 화학과) ;
  • 최원철 (부산대학교 자연과학대학 생물학과)
  • Published : 2002.04.20

Abstract

Fucoidan is a kind of polysaccharides in brown seaweeds. For the past years have been extensively studied due to their numerous biological activities : anticancer, anticoagulant, antithrombotic, anti-inflammatory and antiviral. In this study, we h ave extracted fucoidan from the Korean brown seaweeds and examined it's anticancer activities for employed SV40 DNA replication assay, RPA-ssDNA binding assay of replication protein A(RPA: known as human single-stranded DNA-binding protein essential for DNA rep-lication) and MCF7 cell growth inhibition assay. In addition to, we found that chemically sulfated fucoidan'santicancer activity is more higher than natural and desulfated fucoidan. It seem that fucoidan's sulfate group affect on DNA replication, cause of decrease RPA's DNA binding activity. These results suggests that sulfated fucoidan from Korean brown seaweeds have anticancer activity.

Fucoidan은 갈조류에 다량 함유되어있는 다당류로서 항암작용, 항혈응고작용, 항혈전작용, 항염증작용, 항virus작용과 같은 생리활성작용력을 가지고 있어 최근 많은 연구가 수행되어지고 있다. 본 논문은 갈조류에서 fucoidan을 추출 하여 그 항암활성을 SV40 DNA replication assay, RPA-ssDNA binding assay, 그리고 MCF7 cell growth inhibition assay를 이용하여 알아보았으며 이 항암활성은 fucoidan의 황산기가 중요한 역할을 하고 있음을 알아내었다. 화학적으로 황산기의 함유량을 증가시킨 fucoidan이 황산기의 함유량을 제거시킨 fucoidan보다 항암활성이 뛰어났고, 이는 RPA의 ssDNA 결함력을 떨어 EM리기 때문이라 예측되어 진다. 본 연구는 한국산 갈조류에서 추출한 황산기를 함유한 fucoidan의 항암활성능력을 보여주었다.

Keywords

References

  1. Springer, G. F.; Wurzel, H. A.; McNeal, G. M.; Ansell,N. J.; Doughty, M. F. Proc. Soc. Exp. Med. 1957, 94,404. https://doi.org/10.3181/00379727-94-22960
  2. Boisson-Vidal, C.; Colliec-Jouault, S.; Fischer, A. M.;Tapon-Bretaudiere, J.; Sternberg, C.; Durand, P.; Jozefonvicz,J. Drugs of the Future 1991, 16(6), 539.
  3. Boisson-Vidal; Haroun F.; Ellouali, M.; Blondin, C.;Fischer, A. M.; de Agostini, A.; Jozefonvicz, J. Drugsof the Future 1995, 20(12), 1237.
  4. Itoh, H.; Noda, H.; Amano, H.; Zhuaug, C.; Mizuno,T.; Ito, H. Anticancer research 1993, 13, 2045.
  5. Beress, A.; Wassermann, O.; Tahhan, S.; Bruhn, T.;Beress, L.; Kraiselburd, E. N.; Gonzalez, L.V.; de Motta,G. E.; Chavez, P. I. J Nat Prod. 1993, 56(4), 478. https://doi.org/10.1021/np50094a005
  6. Brunner, G.; Reimbold, K.; Meissauer, A.; Schirrmacher,V.; Erkell, L. J. Exp. Cell Res. 1998, 239, 301. https://doi.org/10.1006/excr.1997.3877
  7. Durig, J.; Bruhn, T.; Zurborn, K.; Gutensohn, K.;Bruhn, H. D.; Beress, L. Thrombosis Research 1997,85(60), 479. https://doi.org/10.1016/S0049-3848(97)00037-6
  8. Lee, H.-S.; Jin, S.-H.; Kim, H-S.; Ryu, B.-H. Korean J. Food Sci. Technol. 1995, 27(5), 716.
  9. Richard, A.; Pfuetzner, Alexey, B.; Lori, F.; Aled, M.;Edwards J. Biol. Chem. 1997, 272(1), 430. https://doi.org/10.1074/jbc.272.1.430
  10. Erdile, L. F.; Heyer, W. D.; Kolodner, R.; Kelly, T. J. JBiol Chem. 1991, 266(18), 12090.
  11. Elena, B.; Sergey, K.; Alexey, B. J. Biol. Chem. 2000,275(35), 27332.
  12. Park, J.-S.; Wang, M.; Park, S.-J.; Lee, S.-H. J. Biol.Chem. 1999, 274(41), 29075. https://doi.org/10.1074/jbc.274.41.29075
  13. Stigger, E.; Dean, F. B.; Hurwitz, J.; Lee, S. H. Proc.Natl. Acad. Sci. U. S. A. 1994, 91(2), 579. https://doi.org/10.1073/pnas.91.2.579
  14. Kar, S.; Carr, B. I. J. Cellular Phys. 2000, 185, 386. https://doi.org/10.1002/1097-4652(200012)185:3<386::AID-JCP8>3.0.CO;2-X
  15. Maeda, M.; Nisizawa, K. J. Biochem. 1968, 63, 199. https://doi.org/10.1093/oxfordjournals.jbchem.a128762
  16. Oneill, A. N. Canadian J. Chem. 1955. 33, 1097. https://doi.org/10.1139/v55-127
  17. Nagasawa, K.; Inoue, Y.; Kamata, T. CarbohydrateResearch 1977, 58, 47. https://doi.org/10.1016/S0008-6215(00)83402-3
  18. Dodgson, K. S.; Price, R. G. Biochem. J. 1962, 84, 106. https://doi.org/10.1042/bj0840106
  19. Nishino, T.; Nagumo, T. Carbohydr Res. 1991, 14(1),193.
  20. Zvyagintseva, T. N.; Shevchenko, N. M.; Nazarova, I.V.; Scobun, A. S.; Luk'yanov, P. A.; Elyakova, L. A.Comp Biochem Physiol C Toxicol Pharmacol. 2000,126(3), 209.
  21. Dace, R.; McBride, E.; Brooks, K.; Gander, J.; Buszko,M.; Doctor, V. M. Thrombosis Research 1997, 87, 113. https://doi.org/10.1016/S0049-3848(97)00110-2
  22. Zvyagintseva, T. N.; Shevchenko, N. M.; Nazarova, I.V.; Scobun, A. S.; Luk'yanov, P. A.; and Elyakova, L.A. Comp. Biochem. Physiol. Part C 2000, 126(3), 209.

Cited by

  1. Preparation of low molecular weight fucoidan by gamma-irradiation and its anticancer activity vol.97, pp.2, 2013, https://doi.org/10.1016/j.carbpol.2013.05.002
  2. Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida vol.43, pp.5, 2008, https://doi.org/10.1016/j.ijbiomac.2008.08.006
  3. In vitro anticancer activity of fucoidan from Turbinaria conoides against A549 cell lines vol.72, 2015, https://doi.org/10.1016/j.ijbiomac.2014.10.005
  4. 효소종류에 따른 불등풀가사리 유래 다당류의 이화학적 특성 및 생리활성 vol.24, pp.3, 2002, https://doi.org/10.11002/kjfp.2017.24.3.455
  5. The Role of Sulfates in Fucoidan Extracted from Fucus evanescens in Proinflammatory Cytokines Production by Human Peripheral Blood Cells in vitro vol.65, pp.5, 2020, https://doi.org/10.37489/0235-2990-2020-65-5-6-3-10