DOI QR코드

DOI QR Code

Material and Sensing Properties of SnO2 prepared by Sol-Gel Methods

Sol-Gel법에 의한 SnO2의 물성 및 센싱 특성

  • 박보석 (조선대학교 재료공학과) ;
  • 홍광준 (조선대학교 물리학과) ;
  • 김호기 (한국과학기술원 재료공학과) ;
  • 박진성 (조선대학교 재료공학과)
  • Published : 2002.11.30

Abstract

Fine particles of $SnO_2$ were fabricated by the sol-gel powder processing using tine(II) chloride dihydrate($SnCl_2{\cdot}2H_2O$) and ethanol($C_2H_5OH$) as raw materials. The powders were investigated about the properties and electrical sensing. Gel powders were fabricated by drying of sol at $120^{\circ}C$ after aging 72hrs and 168hrs. The amount of $SnO_2$ phase was increased below $600^{\circ}C$ due to the elimination of volatile components, and the $SnO_2$ phase was almost completed by the heat treatment at $700^{\circ}C$ for 30min. The grain sizes were about 30nm below $700^{\circ}C$, and it showed the narrow distribution of the grain sizes. The specimens to measure electrical properties were fabricated by the thick film screen printing technique on the alumina substrates. The conductance of $SnO_2$ was showed the intrinsic behaviour of semiconducting ceramics above at $450^{\circ}C$. The constant conductance was observed in the temperature range of $200{\sim}450^{\circ}C$. The sensing properties of response time, recovery, and sensitivity of CO were improved with aging time.

초기 물질은 $SnCl_2{\cdot}2H_2O$$C_2H_5OH$를 사용하여 sol-gel 법으로 제조된 $SnO_2$ 미세 분말의 제반 물성과 전기적 센싱 특성에 대하여 검토하였다. Gel 분말은 sol을 72시간과 168시간 숙성(aging) 시킨 후 $120^{\circ}C$에서 건조하여 제조하였다. $600^{\circ}C$이하에서는 휘발성 물질이 제거되면서 $SnO_2$ 상이 증가하고. $700^{\circ}C$/30min 열처리로 $SnO_2$ 상 생성은 거의 완결된다. 입자 크기는 $700^{\circ}C$ 이하에서 30nm 이하로 유사하고 입도 분포도 좁았다. 전기적 성질 측정을 위한 시편은 후막법으로 알루미나 기판위에 제조하였다. 공기 중의 전도성은 $450^{\circ}C$ 부터 반도성 세라믹스의 진성(intrinsic) 거동을 보이고, $200-450^{\circ}C$ 구간에서는 $SnO_2$ 입자 표면에서의 산소흡착에 기인해서 전도성 변화가 작았다. 환원성 CO 기체에 대한 응답성, 회복성 그리고 감도 특성은 숙성일자 증가로 향상되었다.

Keywords

References

  1. Anal. Chem. v.34 no.11 A New Detector for Gaseous Components Using Semi-conductive Thin Films T. Seiyama;A. Kato;K. Fujiishi;M. Nagatani https://doi.org/10.1021/ac60191a001
  2. J. Chem. Soc. Faraday Trans v.83 no.4 J. F. McAleer;P. T. Moseley;J. O. W. Norris;D. E. Willam https://doi.org/10.1039/f19878301323
  3. Chem. sensor Technol v.4 N. Yamazoe;N. Miura;n. Elsevier(ed.)
  4. Journal of The Electrochemical Society v.123 no.7 Physical Prooerties of SnO₂ Materials Z. M. Jarzebski;J. P. Marton https://doi.org/10.1149/1.2133010
  5. Thin Solid Films v.193/194 no.2 Electrical and Optical Properties of Sprayed SnO₂ Films V. Vasu;A. Subrahmanyam https://doi.org/10.1016/0040-6090(90)90252-9
  6. J. Mater. Sci. v.21 no.8 Preparation and Properties of Antimony-doped SnO₂ Films by Thermal Decomposition of Tin 2-Ethyhexanoate A. Tsunashima https://doi.org/10.1007/BF00551480
  7. Japanese Journal of Applied Physics v.19 no.3 Preapration of Fast Detecting SnO₂ Gas Sensors H. Pink;L. Treitinger;L. Vite https://doi.org/10.1143/JJAP.19.513
  8. Thin Solid Films v.169 no.1 A Tin Oxide Thin Films Sensor with High Ethanol Sensitivity Y. K. Fang;J. J. Lee https://doi.org/10.1016/S0040-6090(89)80004-5
  9. The Stannic Oxide Gas Sensor-principles and Applications K. Ihokura;J. Watson
  10. J. Kor. Ceram. Soc. v.34 no.12 Effect of sintering atmosphere and dopant addition on the densification of SnO₂ ceramics J. I. Jung;B. C. Kim;S. H. Chang;J. J. Kim
  11. Sensors and Actuators B. v.66 The effect of dopants on the electronic structure of SnO₂ thin films W. Liu;X. Cao;Y. Zhu;L. Cao
  12. J. Non-Cryst. Solid v.121 no.1-3 R. S. Hiratsuka;S. H. Pulcinelli;C.V. Santilli https://doi.org/10.1016/0022-3093(90)90109-Y
  13. Colloids and Surface A: Physicochem.Eng. aspects 97 Evolution of the fractal structure during sintering of SnO₂ compacted sol-gel powder G. E. de S. Brito;C. V. Santilli;S. H. Pulcinelli
  14. J. Appl. Phys. v.65 no.2 Thermal analysis of the Bi-Sr-Ca-Cu-O system by an Electrical properties J. S. Park;H. G. Kim https://doi.org/10.1063/1.343083
  15. Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides Per Kofstad