DOI QR코드

DOI QR Code

Side Polished Fiber Optic UV Sensor Using Evanescent Coupling of Photo-Functional Polymer

광기능성 폴리머의 소산장 결합을 이용한 측면연마 광섬유형 자외선 센서

  • Kim, Sang-Woo (Dept. of Sensor Engineering, Kyungpook National University) ;
  • Seo, Gyoo-Won (Dept. of Sensor Engineering, Kyungpook National University) ;
  • Yoon, Jong-Kuk (Dept. of Sensor Engineering, Kyungpook National University) ;
  • Jang, Su-Won (Dept. of Electronic Engineering, Kyungpook National University) ;
  • Yu, Yun-Sik (School of Science and Technology, Dongeui University) ;
  • Lee, Seung-Ha (School of Electronic and Electrical Eng., Kyungpook National University) ;
  • Kang, Shin-Won (School of Electronic and Electrical Eng., Kyungpook National University)
  • Published : 2002.11.30

Abstract

In this paper, we investigated a novel UV sensor using evanescent field coupling between the side polished fiber and photo-functional polymer waveguide. It was found that resonant wavelength shifts occur due to variation in the refractive index of polymer planar waveguide for its photo-functional properties on exposed UV. Spiroxazine (photochromic dye) was used as the planar waveguide. The resonant wavelength responses were exhibited at 1.44 nm/mW, 1.64 nm/mW, and 1.78 nm/mW when UV irradiations were exposed for 20 seconds, 30 seconds, and 40 seconds, respectively. The recovery time of sensor was independent of UV exposure power and 90% recovery time was 100 seconds.

측면연마된 광섬유와 광기능성 색소가 분산된 평면도파로 결합기를 이용한 새로운 형태의 자외선 센서를 제작하여 그 특성을 측정하였다. 자외선 조사에 의해 유효굴절률이 변화하는 광변색성 색소가 분산된 폴리머를 평면 도파로 재료로 사용하였다. 박막 광도파로는 광변색성 색소인 스파이록사진을 사용하였다. 자외선 조사시간을 20초, 30초, 40초로 증가시켰을 경우 센서의 파장응답은 1.44nm/mW, 1.64nm/mW, 1.78nm/mW였고 1550nm 파장에서 센서의 90% 복귀시간은 100초로 나타났다.

Keywords

References

  1. Proc. SPIE v.1764 no.1764 "TAUVEX: UV space telescope", Ultraviolet Technology Ⅳ J. M. Topaz(et al.);Robert E. Hoffman(ed.) https://doi.org/10.1117/12.140874
  2. Proc. SPIE v.1764 no.1764 "Ultraviolet O₂ transmittance : AURIC Implementation", Ultraviolet Technology Ⅳ G. P. Anderson(et al.);Robert E. Huffman(ed.) https://doi.org/10.1117/12.140841
  3. NATO ASI Series Ⅰ v.18 Stratospheric Ozone Depletion/UV-B Radiation in the Biosphere R. Hillton Biggs(et al.)
  4. Solar-UV actions on living cells John Jagger
  5. J. of Korean Sensor v.10 no.3 Pressure sensor using the side polished single mode fiber and polymer planar waveguide coupler J. K. Yoon;W. G. Jung;S. W. Kim;E. S. Kim;S. H. Lee;S. W. Kang
  6. IEEE J. of Lightwave Tech. v.7 no.1 Investigation of coupling between a fiber and an infinite slab D. Marcuse https://doi.org/10.1109/50.17744
  7. J. of Opt. Soc. Am. B v.11 no.5 Distributed coupling between a single-mode fiber and a planar waveguide K. P. Panajotove;Andreev Tz. Andreev https://doi.org/10.1364/JOSAB.11.000826
  8. Optics Lett. v.17 no.21 Fiberoptic refractometer that utilizes multi-mode waveguide overlay devices W. Johnstone;G. thursby;D. Moodie;K. Mccallion https://doi.org/10.1364/OL.17.001538
  9. 경북대학교 대학원 염색공학과 석사학위논문 광변색성 Spiroxazine 색소 박막의 광학특성 이상민
  10. 기능성 색소 김성훈
  11. Thin Solid Films v.330 no.2 a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter A. Andreev;Bl. Pantchev;Pantchev;P. Danesh;B. Zafirova;E. Karakoleva https://doi.org/10.1016/S0040-6090(98)00761-5
  12. IEEE J. of Lightwave Tech. v.13 no.8 Propagation of lower-order modes in a radially anisotropic cylindrical waveguide with liquid crystal cladding Tien-jung Chen;Shu-hsia Chen https://doi.org/10.1109/50.405312
  13. IEEE J. of Lightwave Tech. v.15 no.4 High-performance side-polished fiber and applieation as liquid crystal clad fiber polarizers Ssu-pin ma;Shiao-min Tseng

Cited by

  1. Volatile organic compounds gas sensor using side polished optical fiber vol.19, pp.6, 2010, https://doi.org/10.5369/JSST.2010.19.6.428