Determination of Lead in Steels by Hydride generation-Inductively Coupled Plama/Mass Spectrometry

수소화물 발생-유도결합플라스마 질량분석법에 의한 철강 중의 납의 정량

  • Park, Chang Joon (Division of Chemical Metrology and Material Evaluation, Korea Research Institute of Standards and Science) ;
  • Song, Sun Jin (Department of Chemistry, Yonsei University) ;
  • Lee, Dong Soo (Department of Chemistry, Yonsei University)
  • 박창준 (한국표준과학연구원 물질량표준부) ;
  • 송선진 (연세대학교 화학과) ;
  • 이동수 (연세대학교 화학과)
  • Received : 2001.09.13
  • Published : 2001.10.25

Abstract

An analytical method has been developed which determines lead in steel samples by inductively coupled plasma mass spectrometry (ICP-MS) with sample introduction by the hydride generation. The lead hydride is not stable and requires and oxidant for the oxidation into metastable Pb(IV) before reduction to $PbH_4$ with $NaBH_4$. A study was carried out to find and optimum lead hydride generation condition for a sample solution with more than $1000{\mu}g/mL$ Fe matrix. $K_2Cr_2O_7$ was found to work as an efficient oxidant when more than $10{\mu}g/mL$ Fe matrix was present. Lactic acid was used with the oxidant as a complexing agent of the metastable Pb(IV) to enhance sensitivity. Optimum concentrations of the sample acidity, oxidant and lactic acid were different depending on the matrix concentration. The isotope dilution method was employed for the quantitation of lead. The determined Pb concentrations of the NIST steel SRM 361 and 362 were in good agreement with the certified values within the uncertainty range.

철강 시료 중의 납 분석을 위하여 수소화물 발생법을 플라스마에 납을 선택적으로 주입하고 유도결합플라스마 질량분석법으로 측정하는 분석법을 개발하였다. 납 수소화물 $PbH_4$의 생성을 위해서는 $NaBH_4$와 반응 전에 먼저 준안정 상태의 Pb(IV)로 만들어주기 위하여 산화제가 필요하다. $1000{\mu}g/mL$ 이상의 철 매질을 함유하는 시료용액으로 납 수소화물을 발생시키기 위한 최적조건을 찾는 연구를 수행하였다. 철 매질이 $10{\mu}g/mL$ 이상 존재할 때는 $K_2Cr_2O_7$이 효과적인 산화제로 작용하였으며 젖산을 가하여 감도를 향상시켰다. 시료용액의 산농도 그리고 산화제와 젖산 농도의 최적값은 철 매질의 농도에 따라 달랐다. 동위원소 희석법을 사용하여 납을 정량하였으며 철강 표준물질 NIST SRM 361, 362 분석결과는 불확도 범위안에서 검정값과 잘 일치하였다.

Keywords

References

  1. J. Anal. At. Spectrom. v.3 no.613 B.L. Sharp
  2. Journal of Chromatographic Science v.31 no.330 J.M. Carey;F.A. Byrdy;J.A. Caruso
  3. J. Anal. At. Spectrom. v.14 no.147 D.L. Tsalev
  4. Anal Chem. v.58 no.2864 M.J. Powell;D.W. Boomer;R.J. McVicars
  5. J. Anal. At. Spectrom. v.3 no.821 X. Wang;M. Viczian;A. Lasztity;R.M. Barnes
  6. Tetsu to Hagane v.77 no.1951 T. Okano;Y. Matsumura
  7. J. Anal. At. Spectrom. v.11 no.359 H. Naka;D.C. Gregoire
  8. Analytical Chimica Acta v.237 no.181 M. Madrid;J. Meseguer;M. Bonilla;C. Camara
  9. J. Anal. At. Spectrom. v.8 no.821 M.C. Valdes-Hevia;M.R. Fernandez;A. Sanz-Medel
  10. Analytical Chimica Acta v.237 no.151 J. Li;Y. Liu;T. Lin
  11. Anal. Sci. & Tech. v.13 no.297 K.H. Cho;C.J. Park;J.K. Suh;M.S. Han