Abstract
We present a surface-micromachined polysilicon capacitive accelerometer using unevenly distributed comb electrodes. The unique features of the accelerometer include a perforated proof-mass and the inner and outer comb electrodes with uneven electrode gaps. The perforated proof-mass reduces stiction between the structure and the substrate and the unevenly distributed electrodes shorten the electrode length required for a given sensitivity. The polysilicon accelerometer has been fabricated by the conventional 6-mask surface-micromachining process and showes a sensitivity of 1.03mV/g with a hybrid detection circuitry.