A Design of Fuzzy Controllers using Genetic Algorithm

다개체군 유전자 알고리즘을 이용한 퍼지 제어기의 설계

  • 손호성 (성균관대 전기전자 및 컴퓨터공학과) ;
  • 권기호 (성균관대 전기전자 및 컴퓨터공학과)
  • Published : 2000.11.01

Abstract

Fuzzy controllers show good performance in case of the systems being nonlinear and difficult to solve. But these fuzzy controllers have problems which have to decide suitable rules and membership functions. In general, we decide those using the heuristic methods or the experience of experts. Recently, G.A. have been studied in this field. The number of rules increase exponentially when the number of input and output increase. It also makes hard to decide the rules and membership functions even though we use G.A. In this paper, we suggest parallel fuzzy controllers, and also the method to decrease the number of rules. The excellent performance of these methods is confirmed through simulations.

Keywords

References

  1. Zadeh. L.A., 'Outline of a new approach to the analysis of complex systems and decision processes', IEEE Tr. on Systems, Man, and Cybernetics Vol. SMC-3, No. 1, 1973
  2. Mamdani. E.H., 'Application of fuzzy algorithms for controller of simple dynamic plant', IEEE Proc. Control&Science, Vol. 121, No. 12, 1974
  3. K.Tanaka and M. Sano, Trajectory stabilization of a model car via fuzzy control, Fuzzy Sets and Systems 70, p. 155-170, 1995 https://doi.org/10.1016/0165-0114(94)00214-R
  4. M. Sugeno and M. Nishida, Fuzzy control of model car, Fuzzy Sets and Systems 16, p. 103-113, 1985
  5. M. Sugeno and K. Murakami, An experimental study of fuzzy parking control using a model car, in: M. Sugeno, Ed., Industrial Applications of fuzzy Control, p. 125-138, 1985
  6. M. Sugeno and T. Murofushi, Fuzzy algorithmic control of a model car by oral instructions, Fuzzy Sets and Systems 32, p. 207-218, 1989 https://doi.org/10.1016/0165-0114(89)90255-8
  7. Sukhamay Kundu and Jianhua Chen, Design of heuristic fuzzy controller, Fifth IEEE International Conference on Fuzzy Systems, p.2130-2134, 1996 https://doi.org/10.1109/FUZZY.1996.552793
  8. H. Ishigami, T. Fukuda, T. Shibata and F. Arai, Structure optimization of fuzzy neural network by genetic algorithm, Fuzzy Sets and Systems 71, p. 257-264, 1995 https://doi.org/10.1016/0165-0114(94)00283-D
  9. Yasunobu, S., Miyamoto, S., 'Automatic train operation system by predictive fuzzy control,' in Industrial Applications of Fuzzy Control, M.Sugeno(ed.), Elsevier Science Publisher B.V.(North-Holland), 1985
  10. Yasunobu, S., Hasegawa, T., 'Predictive fuzzy control and its application for automatic container crane operation system,' Control Theory Adr. Technol., Vol. 2, No. 3, 1986
  11. C. L. Karr, 'Design of an adaptive fuzzy logic controller using genetic algorithm,' Proc. the Fourth Int. Conf. Genetic Algorithms, p. 450-457, 1991
  12. P. Thrift, 'Fuzzy logic synthesis with genetic algorithms,' in Proc. Fourth Int. Conf. Genetic Algorithms, p. 509-513, 1991
  13. Ludemann J., Rebeschieb S., 'Comparison of Different Fuzzy Control Approaches for A Ball and Plate System.' EUFIT '98., 1998
  14. Ludemann J., 'Fuzzy-Regelung einer Kugel auf dem Balanciertisch,' TU Berlin, Fachgebiet Regelungstechnik und Systemdinamik, Diplomarbeit, Berlin, 1997
  15. Rebescheib S., 'Kugel auf einem Balanciertisch', TU Berlin, Institut fur Meb nud Automatisierungstechnik, Institusbericht Nr. 181, Berlin, 1996
  16. 류시열 외, 다중 개체군 유전자 알고리즘을 이용한 퍼지 규칙 최적화, 성균관 대학교 전기전자 및 컴퓨터공학부, 대한 전기학회 제 36권 8호 P54-61, 1999