Evolutionary Design of Fuzzy Model

퍼지 모델의 진화 설계

  • 김유남 (한나대 전기.전자.컴퓨터 공학부)
  • Published : 2000.11.01

Abstract

In designing fuzzy model, we encounter a major difficulty in the identification of an optimized fuzzy rule base, which is traditionally achieved by a tedious-and-error process. This paper presents an approach to automatic design of optimal fuzzy rule bases for modeling using evolutionary programming. Evolutionary programming evolves simultaneously the structure and the parameter of fuzzy rule base a given task. To check the effectiveness of the suggested approach, 3 examples for modeling are examined, and the performance of the identified models are demonstrated.

Keywords

References

  1. I. Rechenberg, 'Cybernetic solution of an experimental problem', Tech. Rep., Farnborough, Hants, 1965
  2. I. Rechenberg, Evolutionsstrategie: Optimierung Technischer System Nach prinzipien Der Biologischen Evolution, Frommamm-Holzboog Verlagm 1973
  3. H. P. Schwefel, Evolutionsstrategie und numerische Optimierung. Ph.D. dissertation, Technische Universitat Berlin, Germany, 1975
  4. J. H. Holland, Adaptation in Natural and Artificial Systems. Ann, Arbor, MI: Univ. of Michigan Press, 1975)
  5. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1991
  6. L. J. Fogel, A. J. Marsh and M. J. Walsh, Artificial Intelligence through Simulated Evolution, Wiley and Sons, New York, 1966
  7. D. B. Fogel, and J. W. Atmar(editors): Proceedings of the first annual conference on evolutionary programming, La Jolla, CA: Evolutionary Programming Society, 1992
  8. H. S. Hwang, and K. B. Woo, 'Linguistic fuzzy model identification', IEE Proceedings - Part D, 142, No. 6, November 1995, pp. 537-544 https://doi.org/10.1049/ip-cta:19952254
  9. Y. H. Joo, H. S. Hwang, K. B. Kim and K. B. Woo, 'Linguistic Model Identification for fuzzy system', Electronics Letters 16th, 31, No. 4, Febuary 1995, pp. 330-331 https://doi.org/10.1049/el:19950163
  10. M. Sugeno and T. Yasukawa, 'A fuzzy-logic-based approach to qualitative modelling', IEEE Trans. on Fuzzy Systems, 1, No. 1, February 1993, pp. 7-31 https://doi.org/10.1109/TFUZZ.1993.390281
  11. T. Takagi, and M. Sugeno, 'Fuzzy identification of systems and its application to modelling and control', IEEE Trans. On Syst., Man & Cybern., Vol. 15, 1985, pp. 116-132
  12. C. L. Karr, and E. J. Gentry, 'Fuzzy control of pH using genetic algorithms', IEEE Trans. Fuzzy Systems, Vol. 1, No. 1, January 1993, pp. 46-53 https://doi.org/10.1109/TFUZZ.1993.390283
  13. A. Homaifar, and E. McCormick, 'Simultaneous Design of Membership Functions and Rule Sets for Fuzzy Controllers Using Genetic Algorithms', IEEE Trans. Fuzzy Systems, Vol. 3, No. 2, May 1995, pp. 129-139 https://doi.org/10.1109/91.388168
  14. L. A. Zadeh, 'A theory of approximate reasoning', in Machine Intelligence, L. I. Mikulich, J. E. Hayes, and D. Mitchie, Eds. Vol. 9, New York: Wiley, 1979
  15. L. A. Zadeh, 'Fuzzy sets. Inform. Contr., vol. 8, 1965, pp. 338-353
  16. G. E. P. Box, and G. M. Jenkins, Time Series analysis, forecasting and control, Holden Day, San Francisco, 1970
  17. J. E. Van Benschoton, Separation and Fate of Aluminum in Water Treatment, Univ. of Mass, Ambert, 1998, pp. 154-160
  18. K. Baba, I. Enbutsu, H. Matsuzaki and S. Nogita, 'Intelligent Support System for Water Sewage Treatment Plants which includes a past history Learning Function - Coagulant Injection Guidance System Using Neural-net Algorithm Instrumentation.' Control and Automation of Water and Wastewater Treatment and Transport Systems, 1994, pp. 227-234
  19. I. Enbutsu, K.Baba, and M. Yoda, 'Explicit Representation of Knowledge Acquired from Plant Historical Data Using Neural Network', Proceedings of IJCNN 90, Sandiego, 1990, pp. 56-68 https://doi.org/10.1109/IJCNN.1990.137838
  20. R. M.Tong, 'The evaluation of fuzzy models derived from experimental data', Fuzzy Sets & Systems, 1980, 4, pp. 1-12 https://doi.org/10.1016/0165-0114(80)90059-7
  21. W. PEDRYCZ, 'An identification algorithm in fuzzy relational systems', Fuzzy Sets & Systems, 1984, 13, pp. 153-167 https://doi.org/10.1016/0165-0114(84)90015-0
  22. C. W. XU, 'Fuzzy systems identification', IEE Proc., July 1989, 136, Pt. D, No. 4, pp. 146-150