A Numerical Analysis of Sediment-laden Flow in Open Channel with Bed-load Effect

개수로에서 소유사의 영향을 고려한 부유입자 유동에 관한 수치적 연구

  • 윤준용 (한양대학교 공학대학 기계산업공학부) ;
  • 강승규 (한양대학교 대학원 기계공학과) ;
  • 강시환 (한국해양연구소 연안·항만공학연구센터)
  • Published : 2000.08.01

Abstract

An numerical analysis of sediment-laden flow is carried out, and results are compared with the experiments of Coleman(1981, 1986) that included the several cases varying sediment size and quantity in open channel flow. K-$\omega$ turbulence model is selected for the fully turbulent flow field, and the concentration equation considering the fall velocity is adopted for the concentration field. The model of Einstein and Chien(1955) is applied to couple the velocity field and the concentration field. Most of researches have been carried out without considering the bed-load thickness, but it is found that the bed-load thickness cannot be ignored in case of a large amount of sediment or a large size of it. The bed-load thickness and surface roughness are considered in this study. Here, $\beta$ value, which is defined by the reciprocal of turbulent Schmidt number and is related with the concentration profile, is found to be varied according to the sediment size and quantity. Even though most of researchers have insisted that $\beta$ had always larger than 1.0, it may be concluded that $\beta$ can have smaller value than 1.0, that is coincident with the report of recent research.

본 연구에서는 부유입자를 포함하는 유동을 입자크기와 입자량을 달리한 몇 가지 경우에 대하여 수치적으로 해석하고 Coleman(1981, 1986)의 실험결과와 비교하였다. 완전 난류 유동장을 해석하기 위하여 k-$\omega$난류모형을 사용하였으며, 농도장 해석을 위해서는 침강속도를 고려한 일반화된 농도방정식을 적용하였다. 유동과 입자의 상호작용은 Einstein과 Chien(1955)의 모형을 도입하여 수치계산하였다. 기존의 대부분 연구에서는 소유사의 두께를 고려하지 않은 연구를 수행하였으나, 입자량이 많아지거나 입자크기가 클 경우 이를 무시할 수 없는 것으로 밝혀졌다. 소유사의 두께와 하상에 의한 표면 거칠기 효과를 고려하여 본 연구를 수행하였는데, 여기서 농도분포를 결정짓게 되는 $\beta$값이 입자의 크기와 입자량에 관련되어 있다는 사실을 확인할 수 있었다. 기존 연구결과는 $\beta$가 1.0보다 큰 값을 가진다고 보고되었으나, 본 연구를 통해 1.0보다 작아질수 있음이 확인되었고, 이는 최근에 보고된 연구 결과와 일치되는 결과이다.

Keywords

References

  1. Bechteler, W., and Schrimpf, W. (1984). 'Imp-roved numerical model for sedimentation.' J. Hydr. Eng., ASCE, Vol. 110, No. 3, pp. 234-246
  2. Celik, I. (1983). 'Numerical modelling of sediment transport in open channel flows.' Mechanics of sediment transport, Mechanics of sediment transport, pp. 173-181
  3. Celik, I., and Rodi, W. (1988). 'Modeling suspended sediment transport in nonequilibrium situation.' J. Hydr. Eng., ASCE, Vol. 114, No. 10, pp. 1157-1190
  4. Cellino, M., and Graf, W.H. (1999). 'Sediment-laden flow in open-channels under noncapacity and capacity conditions.' J. Hydr. Eng., Vol. 125, No. 5, pp. 455-462 https://doi.org/10.1061/(ASCE)0733-9429(1999)125:5(455)
  5. Chen, C.J., and Chen, H.C. (1982). The Finite Analysis Method. IIHR Report No. 232-IV, The University of Iowa
  6. Coleman, N.L. (1981) 'Velocity profiles with suspended sediment.' J. Hydr. Research, Vol. 19, No 3, pp 211-229
  7. Coleman, N.L. (1986). 'Effects of suspended sediment on the open channel velocity distribution.' J. Resources Research, Vol. 22, No. 10, pp. 1377-1384
  8. Einstein, H.A. (1950). The bed-load function for sediment transportation in open channel flows, Technical Bulletin No. 1026, Department of Agriculture, Washington, D.C.
  9. Einstein, H.A., and Chien, N. (1955). Effects of heavy sediment concentration near the beds on velocity and sediment distribution, MRD series No.8. U.S.Army Eng. Division, Missouri River, Corps of Engineers Omaha. Nevraska
  10. Engelund, F (1981). Transport of bed load at high shear stress. Institute of Hydrodynamic and Hydraulic Engineering, ISVA, Technical University of Denmark, Progress Rep. 53, pp. 31-35
  11. Galland, J.C., Laurence, D., and Teisson, C. (1997). 'Simulating turbulent vertical excha-nge of mud with a Reynolds stress model.' 4th Nearshore and Exturaine Cohesive Sediment Transport Conference, pp. 439-448
  12. Jobson, H.E., and Sayre, W.W. (1970). 'Verti-cal transfer in open channel flow.' J. Hydr. Eng., ASCE, 96(HY3), pp. 703-724
  13. Karim, Md. F. (1981). Computer-based predictions for sediment discharge and friction factor of alluvial streams. Ph.D. Thesis, University of Iowa
  14. Kovacs, A.E. (1988). 'Prandtl's mixing length concept modified for equilibrium sediment-laden flows.' J. Hydr. Eng., ASCE, Vol. 124, No. 8, pp. 803-812 https://doi.org/10.1061/(ASCE)0733-9429(1998)124:8(803)
  15. Lyn, D.A. (1988). 'A similarity approach to open channel sediment-laden flows.' J. Fluid Mech., Vol. 193, pp. 1-26 https://doi.org/10.1017/S0022112088002034
  16. Muste, M., and Patel, V.C. (1998). 'Velocity profiles for particles and liquid in open channel flow with suspended sediment.' J. Hydr. Eng, Vol. 123, No. 9, pp. 742-751 https://doi.org/10.1061/(ASCE)0733-9429(1997)123:9(742)
  17. Patankar, S.V. (1980). Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation, pp. 113-137
  18. Rouse, H.. (1937). 'Modern conceptions of the mechanics of fluid turbulence.' Transactions, ASCE. Vol. 102, No. 1965. pp. 463-543
  19. Schlichting, H. (1979). Boundary-layer theory, 7th ed., McGraw-Hill, pp. 449-595
  20. Umeyama, M., and Gerritsen, F. (1992). 'Velocity distribution in uniform sediment-laden flows.' J. Hydr. Eng., ASCE, Vol. 118, No.2, pp. 229-245
  21. van Rijn, L.C. (1984). 'Sediment transport, Part II: Suspended load transport.' J. Hydr. Eng., ASCE, Vol 110, No. 11, pp 1613-1641
  22. Wilcox, D.C. (1988) 'Reassessment of the scale determining equation for advanced turbulence models.' AIAA Journal, Vol 26, No. 11, pp. 1299-1310
  23. Wilson, K.C. (1988) Frictional behaviour of sheet flow. Progress Rep. 67. Institute of Hydrodynamic and Hydraulic Engineering, Technical University of Denmark, pp. 11-22
  24. Yoon, J.Y., and Patel, V.C. (1996). 'Numerical model of turbulent flow over sand dune.' J. Hydr. Eng., ASCE, Vol. 122. No. 1, pp. 10-17 https://doi.org/10.1061/(ASCE)0733-9429(1996)122:1(10)
  25. Yoon, J.Y., Patel, V.C., and Ettema, R. (1996). 'Numerical model of flow in ice-covered channel.' J. Hydr. Eng., ASCE, Vol 122. No 1, pp.19-26 https://doi.org/10.1061/(ASCE)0733-9429(1996)122:1(19)