$H_\infty$ Optimal tuning of Power System Stabilizer using Genetic Algorithm

유전알고리즘을 이용한 전력계통 안정화 장치의 강인한 $H_\infty$최적 튜닝

  • Published : 2000.03.01

Abstract

In this paper, a robust H$\infty$ optimal tuning problem of a structure-specified PSS is investigated for power systems with parameter variation and disturbance uncertainties. Genetic algorithm is employed for optimization method of PSS parameters. The objective function of the optimization problem is the H$\infty$-norm of a closed loop system. The constraint of the optimization problem are based on the stability of the controller, limits on the values of the parameters and the desired damping of the dominant oscillation mode. It is shown that the proposed H$\infty$ PSS tuned using genetic algorithm is more robust than conventional PSS.

Keywords

References

  1. F. P. Demello and C. Concordia, 'Concept of synchronous machine stability as affected by excitation control', IEEE Trans. on PAS, Vol. PAS-88, No. 4, pp. 316-329, 1969 https://doi.org/10.1109/TPAS.1969.292452
  2. P. Kundur, D. C. Lee and H. M. Zein El-Din, 'Power system stabilizers for thermal unit : Analytical techniques and on-site validation', IEEE Trans. on PAS, Vol. PAS-1, pp. 81-95, 1981 https://doi.org/10.1109/TPAS.1981.316890
  3. H. Othman, J. J. Snachez-Gasca, M. A. Kale and J. H. Chow, 'On the design of robust power system stabilizers', Proceedings of the 28th conference on decision and control, Tampa, Florida, pp. 1853-1857, 1989 https://doi.org/10.1109/CDC.1989.70478
  4. Y. N. Yu, 'Electric power system dynamics', ACADEMIC PRESS 1983
  5. M. Hassan, O. P. Malik and G. S. Hope, 'A fuzzy logic based stabilizer for a synchronous machine', IEEE Trans. EC, Vol. 6, No.3, pp. 407-413, 1991 https://doi.org/10.1109/60.84314
  6. Y. Y. Tsu and C. R. Chen, 'Tuning of power system stabilizers using ad artificial neural network', IEEE Trans. on EC, Vol 6, No. 4, pp. 612-619, 1991 https://doi.org/10.1109/60.103633
  7. C. X. Mao et al. 'Studies of real-time adaptive optimal excitation controller and adaptive optimal power system stabilizer', IEEE Trans. on EC. Vol. 7, No. 3, pp. 498-605, 1992 https://doi.org/10.1109/60.148583
  8. R. Asgharian, 'A robust $H_{\infty}$ power system stabilizer with no advert effect on shaft torsional modes', IEEE Trans. on EC, Vol. 9, No. 3, pp. 475-781, 1994 https://doi.org/10.1109/60.326465
  9. S. Chen, O. P. Malik, ' $H_{\infty}$ optimization-based power system stabiliser design', IEE Proc. -Gener. Transm. Distrib., Vol. 142, No. 2, pp. 179-184, 1995
  10. F. K. Agbenyo, N. Yorino, H. Sasaki, 'An Improved $H_{\infty}$ power system stabilizer', T. IEE Japan, Vol. 116-B, No. 12, pp. 1470-1477, 1996
  11. 정형환, 정동일, 주석민, '자기조정 퍼지 제어기에 의한 전력계통 안정화에 관한 연구', 한국퍼지 및 지능시스템 학회 논문지, Vol. 5, No. 2, pp. 58-69. 1995
  12. 정형환, 주석민, 정동일, 김상효, 고희석, '전력계통의 안정화를 위한 퍼지 PID 제어기의 적용과 제어 특성', 대한전기학회 논문지, Vol. 47, No. 2, pp.143-149, 1998
  13. K. Glover, J. C. Doyle, ' state-space formulae for all stabilizing controllers that satisfy an $H_{infty}$-norm bound and relations to risk sesitivity', Systems & Control Letters vol. 11, pp 167-172, 1988 https://doi.org/10.1016/0167-6911(88)90055-2
  14. J. C. Doyle, K. Glover, P. P. Khargonekar,' state space solutions to standard $H_2$and $H_{infty}$ control problems', IEEE Trans., on AC, Vol. 34, No. 8, pp. 831-847, 1989 https://doi.org/10.1109/9.29425
  15. J. M. Maciejowski, ' Multivariable feedback design', Addison-Wesley, 1989
  16. R. Y. Chiang and M. G. Sofonov, 'Robust control toolbox user's guide', The Maths works Inc., 1992
  17. K. Zhou, 'Essentials of roubust control', Prentice-Hall, 1998
  18. D. E. Goldberg, 'Genetic Algorithm in search optimization, and machine learning', Addison-Wesley, 1989
  19. Z. Michalewicz, 'Genetic Algorithm +data structure = Evolution program', Springer Verlag, 1992