Load Frequency Control of Multi-area Power System using Auto-tuning Neuro-Fuzzy Controller

자기조정 뉴로-퍼지제어기를 이용한 다지역 전력시스템의 부하주파수 제어

  • 정형환 (동아대 공대 전기전자컴퓨터공학부) ;
  • 김상효 (동아대 정보기술연구소 특별연구원) ;
  • 주석민 (동아대 정보기술연구소 특별연구원) ;
  • 허동렬 (동아대 대학원 전기공학과) ;
  • 이권순 (동아대 공대 전기전자컴퓨터공학부)
  • Published : 2000.03.01

Abstract

The load frequency control of power system is one of important subjects in view of system operation and control. That is even though the rapid load disturbances were applied to the given power system, the stable and reliable power should be supplied to the users, converging unconditionally and rapidly the frequency deviations and the tie-line power flow one on each area into allowable boundary limits. Nonetheless of such needs, if the internal parameter perturbation and the sudden load variation were given, the unstable phenomenal of power system can be often brought out because of the large frequency deviation and the unsuppressible power line one. Therefore, it is desirable to design the robust neuro-fuzzy controller which can stabilize effectively the given power system as soon as possible. In this paper the robust neuro-fuzzy controller was proposed and applied to control of load frequency over multi-area power system. The architecture and algorithm of a designed NFC(Neuro-Fuzzy Controller) were consist of fuzzy controller and neural network for auto tuning of fuzzy controller. The adaptively learned antecedent and consequent parameters of membership functions in fuzzy controller were acquired from the steepest gradient method for error-back propagation algorithm. The performances of the resultant NFC, that is, the steady-state deviations of frequency and tie-line power flow and the related dynamics, were investigated and analyzed in detail by being applied to the load frequency control of multi-area power system, when the perturbations of predetermined internal parameters. Through the simulation results tried variously in this paper for disturbances of internal parameters and external stepwise load stepwise load changes, the superiorities of the proposed NFC in robustness and adaptive rapidity to the conventional controllers were proved.

Keywords

References

  1. V. R. Moorthi, R. P. Aggarwal, 'Suboptimal and near-optimal control of a load-frequency-control system', Proc. IEE, Vol.119, No. 11, pp. 1653-1659, 1972
  2. K. Venkateswarlu and A. K. Mahalanabis, 'Design of decentralised load-frequency regulator', Proc. IEE, Vol. 124, No. 9, pp. 817-821, 1977
  3. G. Shirai, S. Ohtsuia, 'Load Frequency Control for Multi-Area Electric Energy Systems Using Decomposition of Information Structure', T.IEE Japan, Vol. 99-B, No. 7, pp. 417-424, 1979
  4. W. C. Chan, Y. Y. Hsu, 'Automatic generation control of interconectde power system using variable-structure controllers', IEE Proceeding, Vol.128, Pt.D, No.5, pp. 269-279, 1981
  5. A. J. Wood, B. F. Wollenberg, 'Power generation, operation and control', 1984
  6. C. E. Fosha, O. I. Elgerd, 'The Megawatt-Frequency Control Problem; A New Approach Via Optimal Control Theory', IEEE Trans, PAS-89, No. 4, pp. 563-557, 1970 https://doi.org/10.1109/TPAS.1970.292603
  7. E. V. Bohn, 'Optimum load-frequency continuos control with unknown deterministic power demand', IEEE Trans. on Power Apparatus and Systems, Vol. 91, pp. , 1972 https://doi.org/10.1109/TPAS.1972.293518
  8. J. Nanda, B. L. Kaul, 'Automatic generation control of an interconnected power system', IEE Proceeding, Vol.125, No.5, pp. 385-390, 1978
  9. 장세훈, 임화영, '주파수 제어를 위한 비례 제어기구의 최적설계에 관한 연구', 대한전기학회논문지, Vol, No. 2, pp. 99-103, 1977
  10. 김훈기, 곽노홍, 문영현, '최적선형 추적법에 의한 부하주파수제어', 대한전기학회논문지, Vol. 38, No. 2, pp. 88-92, 1989
  11. Y. Wang, R. Zhou and C. Wen, 'Robust load-frequency controller design for power systems', IEE Proceedings, Vol. 140, No. 1, pp. 11-16, 1993
  12. 정영환, 이준탁, 안병철, 왕용필, 김해재, '최적 PID 제어기에 의한 2지역 전력계통의 부하주파수 제어 특성에 관한 연구', 대한전기학회논문지, Vol. 43, No. 5. pp. 703-710
  13. K. Y. Lim, Y. Wang, 'Robust decentralised load frequency control of multi-area power systems', IEE Proceedings, Vol. 14, No. 5, pp. 377-386 https://doi.org/10.1049/ip-gtd:19960452
  14. A. M. Stankovic, G. Tadmor and T. A. Sakharuk, 'On Robust Control Analysis and Design for Load Frequency Regulation', IEEE Trans. Power. Syst., Vol. 13, No. 2, pp. 449-455, 1998 https://doi.org/10.1109/59.667367
  15. H. T. Nguyen, R. R. Yager, 'Theoretical Aspects of Fuzzy Control', John Wiley & Sons, Inc., 1995
  16. Dimiter Drankov, Hans Hellendoorn, 'An Introduction to Fuzzy Control', Springer, 1995
  17. J. C. Wul, T. S. Liu, 'Fuzzy Control Stabilization with Applications to Motorcycle Control', IEEE Transaction on Power Systems, Man and Cybernetics-Part B:Cybernetics, Vol. 26, No. 6, pp. 836-847, 1996 https://doi.org/10.1109/3477.544297
  18. Y. Zhang, G. P. Chen, O. P. Malik, G. S. Hope, 'An Artificial Neural network Based Adaptive Power System Stabilizer', IEEE Transaction on Energy Conversion, Vol. 8, No. 1, pp. 71-77, 1993 https://doi.org/10.1109/60.207408
  19. S. Omatu, M. Khalid, R. Yusof, 'Neuro-Control and its Applications', Springer, 1996
  20. 정형환, 김상효, 주석민, 이정필, 이동철, '퍼지-신경망 제어기를 이용한 2지역 계통의 부하주파수 제어에 관한 연구', 대한전기학회논문지, Vol. 48A. No. 2, pp. 97-106, 1999
  21. Y. Terasawa, S. Iwamoto, 'Optimal power flow solution using fuzzy mathematical programming', Electric engineering in Japan, Vol. 108, No. 3, pp.46-54, 1990 https://doi.org/10.1002/eej.4391080306
  22. H. Nomura, I. Hayashi, M. Wakami, 'A learning method of inference rules by descent methods', IEEE, pp.203-210, 1992 https://doi.org/10.1109/FUZZY.1992.258618
  23. F. Beaufays, Y. A. Magid, 'Application of Neural Networks to Load-Frequency Control in Power Systems', Neural Networks, Vol. 7, No. 1, pp. 183-194, 1994 https://doi.org/10.1016/0893-6080(94)90067-1