횡방.향하중을 받는 그물식 뿌리말뚝의 최적 타설경사각

The Optimum Installation Angle of Reticulated Root Piles under Lateral Loads

  • 이승현 (정회원, 서울대학교 대학원 토목공학과) ;
  • 김명모 (정회원, 서울대학교 공과대학 토목공학과)
  • 발행 : 1997.08.01

초록

본 연구에서는 그물식 뿌리말뚝의 타설경사각과 횡방향저항력 사이의 관계를 비교분석하고자 여러가지의 타설경사각을 갖는 모형 그물식 뿌리말뚝을 제작하여 모형지반에 설치한 다음 횡방 향재하시험을 하였다. 모형 뿌리말뚝의 배치는 12개의 말뚝을 6개씩 2개의 크고 작은 동심원에 접하도록 하였는데 각각의 시험에 사용한 모형말뚝은 $0^{\circ}\;, 5^{\circ}\;, 10^{\circ}\;, 15^{\circ}\;, 20^{\circ}\;, 25^{\circ}$의 타설경사각을 갖 는 직경 5m의 강봉에 모래를 입힌 것이다. 횡방향하중을 받는 뿌리말뚝에 있어서 실험을 통해 얻은 하중변위곡선으로 판단해 볼 때 1mm정도의 횡방향변위에서는 타설경사각이 커질수록 횡방향저항력도 커지지만 최적 타설경사 각은 횡방향변위가 증가할수록 감소하며 6mm의 횡방향변위에서는 $17.5^{\circ}$. 타설경 사각 $0^{\circ}$횡방향저항력에 대한 최적 타설경사각에서의 횡방향저항력의 비는 횡방향변위가 증가할수록 감소하므로 횡방향변위가 커질수록 말뚝을 경사지게 배치함으로써 얻는 저항력 증대효과는 줄어들 것으로 예상된다.

In order to investigate the influence of installation angle of reticulated root piles(RRP) on their lateral load capacities, model tests of lateral loads on RRP with various installation angles $0^{\circ}\;, 5^{\circ}\;, 10^{\circ}\;, 15^{\circ}\;, 20^{\circ}\;,and 25^{\circ}$ are carried out. One set of RRP consists of 12 piles which are installed in circular patterns forming two concentric circles, each of which has 6 piles. Each pile made of a steel bar of 5mm in diameter and 350mm in length, is coated with sand until the bar has the diameter of 6.5mm. According to the test results, RRP's response is travily influenced by the displacement level. At low displacement level(1m), lateral load capacity increases as the installation angle is increased. However, the value of the optimum installation angle decreases as the displacement level is increased. In fact, it is found to be $17.5^{\circ}$ at 6mm lateral displacement. The ratios of the lateral resistances for the optimum installation angles to those for the vertical RRP decrease as the lateral displacements are increased. Thus the effect of slant ins angle of RRP is expected to be reduced at higher level of lateral displacement.

키워드

참고문헌

  1. 서울대, 박사학위 논문 그물식 뿌리말뚝의 최적 타설 경사각 이승현
  2. Foundation Analysis and Design Bowles
  3. Journal of the Soil Mechanics and Foundation Division;Proc. Paper 4702 v.92 no.SM2 Load Transfer for Axially Loaded Piles in Clay Coyle, Harry M.;Lymon C. Reese
  4. Symposium on Bearing Capacity of Piles Root Pattern Piles Underpinning Lizzi,F.
  5. Transaction, ASCE v.127 Generalized Solutions for Laterally Loaded Piles Matlock, Hudson;Lymon C. Reese
  6. Pile Foundations in Engineering Practice Prakash Shamsher;Heri D. Sharma
  7. Geotechnique v.29 no.4 An Analysis of the Vertical Deformation of Pile Groups Randolph,M.F.;C. Peter Wroth
  8. Journal of the Soil Mechanics and Foundations Division v.96 no.SM1 Generalized Analysis of Pile Foundations Reese, Lymon C.
  9. Offshore Technology Conference 6200 North Central Expressway Analysis of Laterally Loaded Piles in Sand Reese, Lymon C.;Cox William R.;Koop, Francis D.
  10. Journal of the Geotechnical Engineering Division v.103 no.GT4 Laterally Loaded Piles:Program Documentation Reese, Lymon C.
  11. Piling:European Practice and Worldwide Trends Sands,M.J.
  12. Underpinning and Retention(2nd edition) Thorburn,S.;Littlejohn,G.S.
  13. Design of Pile Foundation Vesi,A.S.
  14. Offshore Technology Conference Paper 1718, Fourth Offshore Technology Conference A New Way to Predict Capacity of Piles in Clay Vijayvergiya,V.N.;Focht,J.A.Jr