Abstract
Globally, South Korea is a country that has a lot of $CO_2$ emissions and has steadily increased its total greenhouse gas emissions since the 1990s. With the recent implementation of the carbon emission trading system in Korea, the importance of calculating $CO_2$ emissions of construction equipment is increasing, hence the need for accurate calculation of environmental penalties through allocating carbon emission rights. This study presents a methodology to predict the price of carbon credits using big data analysis method. This methodology is based on correlating and regression analysis of trends in carbon emission prices and search volumes. This study aims to support faster and more accurate budget calculations in the planning of the construction process based on the predicted price of carbon emission rights.