Metonymy Resolution based on Neural Approach

딥러닝 방식을 이용한 환유 해소

  • Published : 2019.10.10

Abstract

언어학에서의 환유법은 표현을 위해 빌려온 대상이 다양한 의미로 해석 가능하기에 매우 어렵고 난해한 분야이다. 환유의 특성 상 주어진 엔티티의 환유 여부를 구분하기 위해서는 앞뒤 단어와의 연관성 뿐만 아니라 문장 전체의 문맥 정보에 대한 고려가 필수적이다. 최근 이러한 문맥 정보를 고려하여 학습된 다양한 모델들이 등장하면서 환유법에 대한 연구를 하기에 좋은 환경이 구축되고 있다. 본 논문에서는 언어학적 자질 정보를 최소화한 딥러닝을 이용한 환유 해소 모델을 제안한다. LSTM 기반의 feature-based 모델과 및 BERT, XLNet, RoBERTa와 같은 fine-tuning 모델들에 대한 실험을 진행하였다. 실험 결과, fine-tuning 모델들이 baseline과 비교하여 뛰어난 성능 향상을 가져왔으며, 특히 XLNet 모델은 두 개의 환유 해소 데이터 SemEval 2007와 ReLocaR에 대해 각각 90.1%과 95.8%의 정확도를 보여주었다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터지원사업의 연구결과로 수행되었음 (IITP2018-0-01405). 이 논문은 2017년도 정부(미래창조과학부) 의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No.NRF-2017M3C4A7068189).