A Word Sense Disambiguation for Korean Language Using Deep Learning

딥러닝을 이용한 한국어 어의 중의성 해소

  • Kim, Hong-Jin (Kangwon National University Department of Computer and Communications Engineering) ;
  • Kim, Hark-Soo (Kangwon National University Department of Computer and Communications Engineering)
  • 김홍진 (강원대학교 컴퓨터정보통신공학과) ;
  • 김학수 (강원대학교 컴퓨터정보통신공학과)
  • Published : 2019.10.10

Abstract

어의 중의성 문제는 자연어 분석 과정에서 공통적으로 발생하는 문제로 한 가지의 단어 표현이 여러 의미로 해석될 수 있기 때문에 발생한다. 이를 해결하기 위한 어의 중의성 해소는 입력 문장 중 여러 개의 의미로 해석될 수 있는 단어가 현재 문맥에서 어떤 의미로 사용되었는지 분류하는 기술이다. 어의 중의성 해소는 입력 문장의 의미를 명확하게 해주어 정보검색의 성능을 향상시키는데 중요한 역할을 한다. 본 논문에서는 딥러닝을 이용하여 어의 중의성 해소를 수행하며 기존 모델의 단점을 극복하여 입력 문장에서 중의적 단어를 판별하는 작업과 그 단어의 의미를 분류하는 작업을 동시에 수행하는 모델을 제안한다.

Keywords

Acknowledgement

이 논문은 2016년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2016R1A2B4007732)