Acknowledgement
이 논문은 본 연구는 과학기술정보통신부 및 정보통신기술진흥센터의 대학ICT연구센터지원사업 (IITP-2018-0-01405), 2018년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2018R1D1A1B07051369)
맞춤법 교정이란 주어진 문장에서 나타나는 철자 및 맞춤법 오류들을 올바르게 교정하는 것을 뜻하며 맞춤법 교정 시스템이란 컴퓨터가 이를 자동으로 수행하는 것을 의미한다. 본 논문에서는 맞춤법 교정을 기계번역의 관점으로 바라보고 문제를 해결하였다. 소스문장에 맞춤법 오류문장, 타겟 문장에 올바른 문장을 넣어 학습시키는 방법을 제안한다. 본 논문에서는 단일 말뭉치로 한국어 맞춤법 병렬 말뭉치를 구성하는 방법을 제안하며 G2P(Grapheme to Phoneme)를 이용한 오류 데이터 생성, 자모 단위 철자 오류데이터 생성, 통번역 데이터 기반 오류 데이터 생성 크게 3가지 방법론을 이용하여 맞춤법 오류데이터를 생성하는 방법론을 제안한다. 실험결과 GLEU 점수 65.98의 성능을 보였으며 44.68, 39.55의 성능을 보인 상용화 시스템보다 우수한 성능을 보였다.
이 논문은 본 연구는 과학기술정보통신부 및 정보통신기술진흥센터의 대학ICT연구센터지원사업 (IITP-2018-0-01405), 2018년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2018R1D1A1B07051369)