A Method For Autonomous Determination Of Corrosion State Of Gas-pipeline Using RPM-based SOM

관계적시점지도로 구성된 SOM을 이용한 가스배관 부식상태의 자율적 판단 방법

  • 손충연 (한국가스안전공사 가스안전연구원) ;
  • 여지혜 (숭실대학교 일반대학원 미디어과) ;
  • 고일주 (숭실대학교 일반대학원 미디어과)
  • Published : 2011.01.20

Abstract

시설의 안전성 평가에 대한 연구는 안전성에 영향을 주는 데이터를 정량화하여 획일적인 자동 수행하는 안전관리가 주를 이루고 있다. 이와 달리 자율수행은 수집 된 상황 정보나 상태 데이터를 이용하여 안전성을 예측하고 사고 위험성을 경보하여 사고를 예방 할 수 있다. 본 연구에서는 다양한 시설물 중에서 가스배관의 부식에 대한 판단을 위해서 신경망의 대표적 비지도학습인 자기조직화지도를 적용한다. SOM의 적용에서는 주변효과를 보완하기 위해서 관계적관점지도로 맵을 구성한다. 학습 할 데이터는 가스배관의 방식전위이다. 배관의 부식상태를 확인하기 위하여 수집 된 데이터인 방식전위에는 부식에 대한 위험요인이 내재되어 있다. 학습 후 새로운 데이터가 입력되면 각 상태 군집의 중심뉴런과 맵핑된 뉴런의 유사도를 측정하여 배관의 부식상태를 결정한다. 제안 된 방법으로 판단 된 결과를 기존에 사람이 판단한 결과와 비교하여 검증한다. 이를 통해 배관의 부식상태를 자율적이고 신속하게 판단하여 지능화 된 가스배관 관리로 활용한다.

Keywords