Independent Component Analysis of Fixed Point Learning Algorithm Based on Secant Method

할선법에 기초한 고정점 학습알고리즘의 독립성분분석

  • 조용현 (대구가톨릭대학교 공과대학 컴퓨터정보통신공학부) ;
  • 박용수 (대구가톨릭대학교 공과대학 컴퓨터정보통신공학부)
  • Published : 2002.05.01

Abstract

본 연구에서는 엔트로피 최적화를 위한 목적함수의 근을 구하기 위해 단순히 함수 값만을 이용하여 계산을 근사화한 할선법에 기초한 고정점 알고리즘의 독립성분분석 기법을 제안하였다. 이렇게 하면 기존의 뉴우턴법에 기초한 고정점 알고리즘에서 요구되는 복잡한 도함수의 계산과정을 간략화 할 수 있어 더 우수한 학습성능의 독립성분분석이 가능하다. 제안된 학습알고리즘의 독립성분분석 기법을 512$\times$512의 픽셀을 가지는 10개의 영상을 대상으로 임의의 혼합행렬에 따라 발생되는 혼합영상들을 실험하였다. 실험결과, 기존의 뉴우턴법에 기초한 고정점 알고리즘의 분석기법보다 빠른 학습속도와 개선된 분리성능이 있음을 확인하였다. 특히 기존의 알고리즘에서 임의로 설정되는 초기값에 덜 의존하는 학습성능이 있음도 확인할 수 있었다.

Keywords