Proceedings of the Korean Institute of Intelligent Systems Conference (한국지능시스템학회:학술대회논문집)
- 2002.05a
- /
- Pages.6-9
- /
- 2002
Decision Support Method in Dynamic Car Navigation Systems by Q - Learning
- Hong, Soo-Jung (Dept. of computer science and Engineering, Sogang University) ;
- Hong, Eon-Joo (Dept. of computer science and Engineering, Sogang University) ;
- Oh, Kyung-Whan (Dept. of computer science and Engineering, Sogang University)
- Published : 2002.05.01
Abstract
오랜 세월동안 위대한 이동수단을 만들어내고자 하는 인간의 끓은 오늘날 눈부신 각종 운송기구를 만들어 내는 결실을 얻고 있다. 자동차 네비게이션 시스템도 그러한 결실중의 한 예라고 할 수 있을 것이다. 지능적으로 판단하고 정보를 처리할 수 있는 자동차 네비게이션 시스템을 부착함으로써 한단계 발전한 운송수단으로 진화할 수 있을 것이다. 이러한 자동차 네비게이션 시스템의 단점이라면 한정된 리 소스만으로 여러 가지 작업을 수행해야만 하는 어려움이다. 그래서 네비게이션 시스템의 주요 작업중의 하나인 경로를 추출하는 경로추출(Route Planing) 작업은 한정된 리 소스에서도 최적의 경로를 찾을 수 있는 지능적인 방법이어야만 한다. 이러한 경로를 추출하는 작업을 하는 데 기존에 일반적으로 쓰였던 두 가지 방법에는 Dijkstra's algorithm과 A* algorithm이 있다. 이 두 방법은 최적의 경로를 찾아 낸다는 점은 있지만 경로를 찾기 위해서 알고리즘의 특성상 각각, 넓은 영역에 대하여 탐색작업을 해야하고 또한 수행시간이 많이 걸린다는 단점과 또한 경로를 계산하기 위해서 Heuristic function을 추가적인 정보로 계산을 해야 한다는 단점이 있다. 본 논문에서는 적은 탐색 영역을 가지면서 또한 최적의 경로를 추출하는 데 드는 수행시간은 작으며 나아가 동적인 교통환경에서도 최적의 경로를 추출할 수 있는 최적 경로 추출방법을 강화학습의 일종인 Q- Learning을 이용하여 구현해 보고자 한다.