• Title/Summary/Keyword: zsm-5

Search Result 136, Processing Time 0.024 seconds

Selective Catalytic Reduction of NOx with Ammonia over Cu and Fe Promoted Zeolite Catalysts (구리 제올라이트와 철 제올라이트 촉매에 의한 질소산화물의 암모니아 선택적 촉매환원반응 특성)

  • Ha, Ho-Jung;Hong, Ju-Hwan;Choi, Joon-Hwan;Han, Jong-Dae
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.287-294
    • /
    • 2013
  • The $NH_3$-selective catalytic reduction (SCR) reaction of NO with excess of oxygen were systematically investigated over Cu-zeolite and Fe-zeolite catalysts. Cu-zeolite and Fe-zeolite catatysts to adapt the SCR technology for mobile diesel engines were prepared by liquid ion exchange and incipient wetness impregnation of $NH_4$-BEA and $NH_4$-ZSM-5 zeolites. The catalysts were characterized by BET, XRD, FE-TEM (field emission transmission electron microscopy) and SEM/EDS. The SCR examinations performed under stationary conditions showed that the Cu-exchanged BEA catalyst revealed pronounced performance at low temperatures of $200{\sim}250^{\circ}C$. With respect to the Fe-zeolite catalyst, the Cu-zeolite catalyst showed a higher activity in the SCR reaction at low temperatures below $250^{\circ}C$. BEA zeolite based catalyst exhibited good activity in comparison with ZSM-5 zeolite based catalyst at low temperatures below $250^{\circ}C$.

The Crystallization of ZSM-5 at Low Temperature and Atmospheric Pressure (저온 상압하에서 ZSM-5의 결정화 반응)

  • Kim, Wha Jung;Lee, Myung Churl;Kim, Jo Woong;Ha, Jae Mok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.320-331
    • /
    • 1997
  • ZSM-5 was crystallized at low temperature and atmospheric pressure using reflux unit. The overall molar composition used in this study was $7.83Na_2O-0.25Al_2O_3-100SiO_2-xTPABr-yH_2O$ where x is 1 and 3 mol, and y is 3000 mol, 3500 mol, and 4000 mol. $2^3$ factorial experiments were performed with the results of kinetics studies, showing $Na_2O$, TPABr, and $H_2O$ as main factors. The result suggested that the concentration of $H_2O$ is the most important. The morphology of final product was very uniform showing well-defined crystals with BET surface area of ca. $410m^2/g$.

  • PDF

ESR Analysis of Cupric Ion Species Exchanged into NaH-ZSM-5 Gallosilicate

  • Yu, Jong-Sung;Kim, Jeong-Yeon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • ZSM-5 gallosilicate molecular sieves was synthesized and cupric ion was ion-exchanged into the gallosilicate. The locations of Cu(ll) species in the framework and their interactions with various adsorbates were characterized by combined electron spin resonance(ESR) and electron spin echo modulation(ESEM) methods. It was found that in a fresh hydrated material, Cu(II) is octahedrally coordinated to six water molecules. This species is located in the channel intersections of two sinusoidal channels and rotates rapidly at room temperature. Evacuation removes some of these water molecules, leaving the Cu(II) coordinated to less water molecules and anchored to of oxygens in the channel wall. Dehydration produces two Cu(II) species, both of which are located in sites inaccessible to oxygen as evidenced by non-broadening of its ESR lines by oxygen. Adsorption of adsorbate molecules such as water, alcohols, ammonia, acetonitrile and ethylene on dehydrated CuNaH-ZSM-5 gallosilicate materials causes changes in the ESR spectrum of Cu(II), indicating the migration of Cu(II) into main channels to form complexes with these adsorbates there. Cu(II) forms a complex with two molecules of methanol, ethanol and propanol, respectively as evidenced by ESR parameters and ESEM data. Cu(II) also forms a square planar complex with four molecules of ammonia, based on the resolved nitrogen superhyperfine interactions and their ESEM parameters. Cu(II) forms a complex with two molecules of acetonitrile based on the ESR parameters and ESEM data. Interestingly, however, only part of Cu(II) interacts indirectly with one molecule of nonpolar ethylene based on ESR and ESEM analyses.

  • PDF

Lean Burn de-NOx Properties of Pt-TiO2 Bifunctioncal Catalyst by Propylene (희박연소 상태에서 프로필렌 환원제에 의한 Pt-TiO2 이원기능 촉매의 NOx 제거 특성)

  • Jeong, Tae-Seop;Chae, Soo-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.511-521
    • /
    • 2000
  • Investigation was carried out lean burn de-NOx properties of Pt-$TiO_2$ bifunctional catalyst by propylene in order to get the high de-NOx activity and the wide temperature window under coexistence of $SO_2$ and $H_2O$. Only noncatalyst and carrier catalyst themselves had NOx conversion activity at high temperature over $400^{\circ}C$. NOx conversion activity of catalysts exchanged copper ion resulted in Cu-$TiO_2$>Cu-ZSM-5>Cu-$Al_2O_3$>CU-YZ>Cu-AZ. Catalysts impregnated with platinum based on titania gave the results of high NOx conversion activity at low temperature. $250^{\circ}C$. Bifunctional catalysts based on Pt-$TiO_2$ showed high NOx conversion activity both at a low zone of $300^{\circ}C$ and a high zone of $500^{\circ}C$. Pt-$TiO_2$/$Al_2O_3$ catalyst gave the highest NOx conversion activity at a low temperature zone. and Pt-$TiO_2$/$Mn_2O_3$(21) catalyst gave the highest NOx conversion activity at a high temperature zone. Under the coexistence of $SO_2$ and $H_2O$. NOx conversion activities of 0.55wt%Pt-$TiO_2$/5wt%Cu-ZSM-5 catalyst was high both at a low and high temperature zone, and increased depending on oxygen concentration. 0.55wt%Pt-$TiO_2$/5wt%Cu-ZSM-5 catalyst showed the best correlation between de-NOx activities and the propyl ere conversion rates to CO on the log function.

  • PDF

The Effects of Zeolite-Type Catalysts on the Pyrolysis Reaction of PP to Produce Fuel-oil (폴리프로필렌 수지 이용 연료유 생성을 위한 열분해 반응에서 제올라이트계 촉매의 영향)

  • Bak, Young-Cheol;Choi, Joo-Hong;Oh, Se-Hui
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.442-448
    • /
    • 2012
  • The effects of zeolite-type catalysts addition on the thermal decomposition of the PP resin have been studied in a thermal analyzer, a Pyrolyser GC-mass, and a small batch reactor. The zeolite type catalysts tested were natural zeolite, used FCC catalyst, and ZSM-5. As the results of TGA experiments, the pyrolysis starting temperature for PP varied in the range of $330{\sim}360^{\circ}C$ according to the heating rate. Addition of the zeolite type catalysts in the PP resin increased the pyrolysis rate in the order of used FCC catalyst> natural zeolite> ZSM-5 > PP resin. Adding the used FCC catalyst in the PP reduced most effectively the pyrolysis finishing temperature. In the PY-G.C. mass experiments, addition of zeolite type catalysts decreased the molecular weight of pyrolyzed product. In the batch system experiments, the mixing of used FCC catalyst enhanced best the initial yield of fuel oil, but the final yield of fuel oil was 2% higher in the case of mixing of natural zeolite. Also in the carbon number analysis, used FCC catalyst was the most useful one in this experiments for fuel oil.

Pervaporation of n-Butanol/water Mixture through Organophilic ZSM-5 Zeolite Membrane (소수성 ZSM-5 제올라이트 분리막을 이용한 n-부탄올/물 혼합물의 투과증발)

  • Cho, Moon-Hee;Kong, Chang-In;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.336-344
    • /
    • 2011
  • Organophilic ZSM-5 membrane was synthesized on the inside of a porous stainless steel support by a hydrothermal secondary growth with seed crystals. They are used to separate n-butanol from its aqueous solution. Pervaporation characteristics such as a permeation flux and a separation factor are investigated as a function of the feed concentration and the operating temperature. The concentration of n-butanol was changed from 0.001 mole fraction to 0.015 mole fraction with an interval of 0.005 mole fraction; the operating temperature was controlled to be 25C, $35^{\circ}C$ and $45^{\circ}C$. When the operating temperature was $45^{\circ}C$, the flux of n-butanol significantly increased from 2 to $27g/m^2/hr$ as the mole fraction of n-butanol in the feed side increased from 0.001 to 0.015. Consequently, the concentration of n-butanol in the permeate substantially increased from 0.0016 to 0.052 mole fraction. When the feed concentration was 0.015, the flux of n-butanol significantly increased from 13 to $27g/m^2/hr$ as the operating temperature increased from $25^{\circ}C$ to $45^{\circ}C$. As a result, the concentration of n-butanol in the permeate also increased from 0.045 to 0.052 mole fraction.

Trends of 5G Network Automation and Intelligence Technologies Standardization (5G 네트워크 자동화 및 지능 기술 표준화 동향)

  • Shin, M.K.;Lee, S.H.;Yi, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.92-100
    • /
    • 2019
  • Vast amounts of different service-specific requirements and vertical network slicing in a 5G network increase the complexity, cost of the network management and resource operations for carriers. To solve this problem, 3GPP is working on the standardization of NWDAF to support the automation of the 5G network by utilizing artificial intelligence technologies based on Big Data to improve the efficiency of network management and resource operation. In addition, the ETSI ZSM Industry Specification Group is developing technical standards for the automation of end-to-end network management and service delivery. This document provides an overall survey of the latest standardization issues of the NWDAF in 3GPP and ETSI ZSM for 5G network automation and intelligence.

Investigation of Coke Formation on H-ZSM-5 Catalyst During Aromatization of C5 Paraffin and Olefin Using Optical and Fluorescence Microscopy

  • Chung, Young-Min
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.327-332
    • /
    • 2013
  • Space- and time-resolved in-situ optical and fluorescence microspectroscopy techniques have been applied to investigate the coke formation during aromatization of C5 paraffin and olefin over H-ZSM-5 crystal. In-situ UV/vis absorption measurement offers space- and time-resolved information for the coke formation. Different coking trends have been observed with respect to the location of a crystal as well as the reactant types. From in-situ confocal fluorescence microspectroscopy study, it is revealed that the concentration of certain species photo-excited at 488 nm becomes high at the central region, whereas the compounds emitting fluorescence by 561 nm laser move towards the boundary region of the crystal. The different fluorescence patterns obtained varying excitation lasers suggest the existence of distinct fluorescence emitting species having different degree of coke growth.

Adsorption and electro-Fenton processes over FeZSM-5 nano-zeolite for tetracycline removal from wastewater

  • Niaei, Hadi Adel;Rostamizadeh, Mohammad
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.173-181
    • /
    • 2020
  • Adsorption and heterogeneous electro-Fenton process using iron-loaded ZSM-5 nano-zeolite were investigated for the removal of Tetracycline (TC) from wastewater. The nano-zeolite was synthesized hydrothermally and modified through impregnation. The zeolite was characterized by XRD, FT-IR, FE-SEM, N2 adsorption-desorption, and NH3-TPD techniques. The equilibrium data were best represented by the Freundlich isotherm. The pseudo-second-order kinetic model was the most accurate model for the adsorption of TC on the modified nano-zeolite. The effect of parameters such as pH of solution and current density were investigated for the heterogeneous electro-Fenton process. The results showed that the current density of 150 mA and pH of 3 led to the highest TC removal (90.35%) at 50 min. The nano-zeolite showed the appropriate reusability. Furthermore, the developed kinetic model was in good agreement with the removal data of TC through the electro-Fenton process.

The Effect of Promoter on the SO2-resistance of Fe/zeolite Catalysts for Selective Catalytic Reduction of NO with Ammonia (NO의 암모니아 선택적 촉매환원반응을 위한 철 제올라이트 촉매의 내황성에 미치는 조촉매 효과)

  • Ha, Ho-Jung;Choi, Joon-Hwan;Han, Jong-Dae
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.153-163
    • /
    • 2015
  • The effects of H2O and residue SO2 in flue gases on the activity of the Fe/zeolite catalysts for low-temperature NH3-SCR of NO were investigated. And the addition effect of Mn, Zr and Ce to Fe/zeolite for low-temperature NH3-SCR of NO in the presence of H2O and SO2 was investigated. Fe/zeolite catalysts were prepared by liquid ion exchange and promoted Fe/zeolite catatysts were prepared by liquid ion exchange and doping of Mn, Zr and Ce by incipient wetness impregnation. Zeolite NH4-BEA and NH4-ZSM-5 were used to adapt the SCR technology for mobile diesel engines. The catalysts were characterized by BET, X-ray diffraction (XRD), SEM/EDS, TEM/EDS. The NO conversion at 200 ℃ over Fe/BEA decreased from 77% to 47% owing to the presence of 5% H2O and 100 ppm SO2 in the flue gas. The Mn promoted MnFe/BEA catalyst exhibited NO conversion higher than 53% at 200 ℃ and superior to that of Fe/BEA in the presence of H2O and SO2. The addition of Mn increased the Fe dispersion and prevented Fe aggregation. The promoting effect of Mn was higher than Zr and Ce. Fe/BEA catalyst exhibited good activity in comparison with Fe/ZSM-5 catalyst at low temperature below 250 ℃.