• Title/Summary/Keyword: zone instability

Search Result 108, Processing Time 0.024 seconds

Numerical Analysis of Two-Dimensional Nonlinear Radiation Problem Using Higher-Order Boundary Element Method (고차경계요소법을 이용한 2차원 비선형 방사문제의 수치해석)

  • Hong-G. Sung;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.67-81
    • /
    • 2000
  • An accurate and efficient numerical method for two-dimensional nonlinear radiation problem has been developed. The wave motion due to a moving body is described by the assumption of ideal fluid flow, and the governing Laplace equation can be effectively solved by the higher-order boundary element method with the help of the GMRES (Generalized Minimal RESidual) algorithm. The intersection or corner problem is resolved by utilizing the so-called discontinuous elements. The implicit trapezoidal rule is used in updating solutions at new time steps by considering stability and accuracy. Traveling waves caused by the oscillating body are absorbed downstream by the damping zone technique. It is demonstrated that the present method for time marching and radiation condition works efficiently for nonlinear radiation problem. To avoid the numerical instability enhanced by the local gathering of grid points, the regriding technique is employed so that all the grids on the free surface may be distributed with an equal distance. This makes it possible to reduce time interval and improve numerical stability. Special attention is paid to the local flow around the body during time integration. The nonlinear radiation force is calculated by the "acceleration potential technique". Present results show good agreement with other numerical computations and experiments.

  • PDF

Strain Analysis of Crust at the Stabilization Stage Using and Applied Statistical Analysis

  • Kim, Hyeong-Sin;Yun, Hyun-Seok;Chae, Byung-Gon;Choi, Jung-Hae;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.9-20
    • /
    • 2015
  • A strainmeter goes through a period of instability immediately after installation. To determine the stability of strainmeters installed around the Andong fault zone, South Korea, an x-MR control chart analysis and a T2 control chart analysis were conducted. The x-MR control chart analysis used an empirically determined 3σ control limit line to identify abnormal data in recently installed strain gauges. In the T2 control chart analysis, the control limit line was set at a confidence of 95%. A comparison of the early stage of measurement with the terminal stage of measurement for three months after installation indicates that stabilization depends on the location and direction of each strain gauge in x-MR control chart analysis. In the T2 control chart analysis, the number of values exceeding the control limit line decreased as the terminal stage was approached. Based on these results, it is suggested that the 3σ control limit line of an x-MR control chart can be used as a standard for single gauge stability, and that the 95% confidence limit of a T2 control chart analysis could be used as the standard for the stability of multi-gauge strainmeters.

The Ultimate Load Capacity of the Parabolic Arches by Elasto-Plastic Model (탄소성 모델에 의한 포물선 아치의 극한 내하력 평가)

  • 조진구;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.3
    • /
    • pp.92-100
    • /
    • 2002
  • The advent or high-strength steel has enabled the arch structures to be relatively light, durable and long-spanned by reducing the cross sectional area. On the other hand, the possibility of collapse may be increased due to the slender members which may cause the stability problems. The limit analysis to estimate the ultimate load is based on the concept of collapse mechanism that forms the plastic zone through the full transverse sections. So, it is not appropriate to apply it directly to the instability analysis of arch structures that are composed with compressive members. The objective of this study is to evaluate the ultimate load carrying capacity of the parabolic arch by using the elasto-plastic finite element model. As the rise to span ratio (h/L) varies from 0.0 to 0.5 with the increment of 0.05, the ultimate load has been calculated fur arch structures subjected to uniformly distributed vertical loads. Also, the disco-elasto-plastic analysis has been carried out to find the duration time until the behavior of arch begins to show the stable state when the estimated ultimate load is applied. It may be noted that the maximum ultimate lead of the parabolic arch occurs at h/L=0.2, and the appropriate ratio can be recommended between 0.2 and 0.3. Moreover, it is shown that the circular arch may be more suitable when the h/L ratio is less than 0.2, however, the parabolic arch can be suggested when the h/L ratio is greater than 0.3. The ultimate load carrying capacity of parabolic arch can be estimated by the well-known formula of kEI/L$^3$where the values of k have been reported in this study. In addition, there is no general tendency to obtain the duration time of arch structures subjected to the ultimate load in order to reach the steady state. Merely, it is observed that the duration time is the shortest when the h/L ratio is 0.1, and the longest when the h/L ratio is 0.2.

An Experimental Study on the Flashback and Re-ignition Structure with a V-gutter type Flameholder (V-gutter형 보염기에서 발생하는 화염의 역화 및 재점화 구조에 관한 실험적 연구)

  • Jeong, Chan-Yeong;Kim, Tae-Sung;Song, Jin-Kwan;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.603-607
    • /
    • 2011
  • Structure of flashback and reignition occurring near flameholder was experimentally investigated in a model combustor with V-gutter flameholder. The combustor has a long duct shape with cross section of $40{\times}40mm$ and City Nature Gas(CNG) were used as fuel. Measurements of chemiluminescence with high speed camera was used for visualization of flame structure. In the lean case, flashback distance depend on equivalent ratio. New flame occurred at the front tip of flameholder when flashback. Flashback flame moved toward downstream direction of combustor because mixture flow velocity had increased, and then re-ignition was caused by entering flow into recirculation zone that is formed behind the flameholder.

  • PDF

Microvascular Decompression for Glossopharyngeal Neuralgia : Clinical Analyses of 30 Cases

  • Kim, Mi Kyung;Park, Jae Sung;Ahn, Young Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.6
    • /
    • pp.738-748
    • /
    • 2017
  • Objective : We present our experience of microvascular decompression (MVD) for glossopharyngeal neuralgia (GPN) and evaluate the postoperative outcomes in accordance with four different operative techniques during MVD. Methods : In total, 30 patients with intractable primary typical GPN who underwent MVD without rhizotomy and were followed for more than 2 years were included in the analysis. Each MVD was performed using one of four different surgical techniques : interposition of Teflon pieces, transposition of offending vessels using Teflon pieces, transposition of offending vessels using a fibrin-glue-coated Teflon sling, and removal of offending veins. Results : The posterior inferior cerebellar artery was responsible for neurovascular compression in 27 of 30 (90%) patients, either by itself or in combination with other vessels. The location of compression on the glossopharyngeal nerve varied; the root entry zone (REZ) only (63.3%) was most common, followed by both the REZ and distal portion (26.7%) and the distal portion alone (10.0%). In terms of detailed surgical techniques during MVD, the offending vessels were transposed in 24 (80%) patients, either using additional insulation, offered by Teflon pieces (15 patients), or using a fibrin glue-coated Teflon sling (9 patients). Simple insertion of Teflon pieces and removal of a small vein were also performed in five and one patient, respectively. During the 2 years following MVD, 29 of 30 (96.7%) patients were asymptomatic or experienced only occasional pain that did not require medication. Temporary hemodynamic instability occurred in two patients during MVD, and seven patients experienced transient postoperative complications. Neither persistent morbidity nor mortality was reported. Conclusion : This study demonstrates that MVD without rhizotomy is a safe and effective treatment option for GPN.

Research on Job Stress of Hospital Workers in Busan (부산지역 의료기관 종사자들의 직무스트레스)

  • Jung, Yong-Mo;Jang, Hyo-Kang
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.241-251
    • /
    • 2010
  • The purpose of this study is to identify the difference of stress amount depending on the characteristics of hospital workers and job-stress's influence on the stress-measurement fields. For this purpose, the study surveyed 475 workers in 9 hospitals (2 general hospitals and 7hospitals) in Busan and empirically analyzed the data collected from them. In terms of theory and practice, the result of this study suggests as follows: First, there is significant difference in the stress amount depending on worker'scharacteristics.Second, the stress-measurement field with the largest influence on the job-stress is the job requirement, and the lowest field is the hospital culture. Third, at comparing the job stress amount with those of average Koreans, the stress-requirement field occupies the upper 50% zone for male, and the job-instability forfemale. As the result of this study, it is recognized that the structure management of medical institutions must consider the different stress factors according to the workers characteristics.

Study on Plugging Criteria for Thru-wall Axial Crack in Roll Transition Zone of Steam Generator Tube (증기발생기 전열관 확관천이부위 축방향 관통균열의 관막음 기준에 관한 연구)

  • Park, Myeong-Gyu;Kim, Yeong-Jong;Jeon, Jang-Hwan;Kim, Jong-Min;Park, Jun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2894-2900
    • /
    • 1996
  • The stream generator tubes represent an integral part of a major barrier against the fission product release to the environment. So, the rupture of these tubes could permit flow of reactor coolant into the secondary system and injure the safety of reactor coolant system. Therefore, if the crack was detected during In-Service Inspection of tubes the cracked tube should be evaluated by the pulgging criteria and plugged or not. In this study, the fracture mechanics evaluation is carried out on the thru-wall axial crack due to Primary Water Stress Corrosion Cracking in the roll transition aone of steam generator tube to help the assurence the integrity of tubes and estabilish the plugging criteria. Due to the Inconel which is used as tube material is more ductile than others, the plastic instability repture theory was used to calculate the critical and allowable crack length. Based on Leak Before Break concept the leak rate for the critical crack length and the allowable leak rate are compared and the safety of tubes was given.

Large Eddy Simulation of Swirling Premixed Flames in a Model Gas Turbine Combustor (모형 가스터빈 연소기에서 선회 예혼합화염의 대와동모사(LES))

  • 황철홍;이창언
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.79-88
    • /
    • 2006
  • In the present paper, the swirl flow structure and flame characteristics of turbulent premixed combustion in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. When inlet swirl number is increased, the distinct flow structures, such as the shapes of corner recirculation and center toroidal recirculation zone, are observed and the flame length is shorted gradually. Also, the phenomena of flashback are identified at strong swirl intensity. In order to get the accurate description of unsteady flame behavior, the predictive ability of the acoustic wave in a combustor is primarily evaluated. It is found that the vortex generated near the edge of step plays an important role in the flame fluctuation. Finally it is examined systematically that the flame and heat release fluctuation are coupled strongly to the vortex shedding generated by swirl flow and acoustic wave propagation from the analysis of flame-vortex interaction.

Stability Rating Tests for Optimization of Axial Baffle Length (배플 길이의 최적화를 위한 연소 안정성 평가 시험)

  • Kim, Hong-Jip;Lee, Kwang-Jin;Seo, Seong-Hyeon;Kim, Seung-Han;Han, Yeoung-Min;Seol, Woo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.69-77
    • /
    • 2005
  • To optimize and limit the axial length of the baffle of the KSR-III engine, stability rating tests using pulse gun as one of artificial disturbance devices have been done. Generally a rocket engine can be considered to be dynamically stable if a certain imposed external perturbation or pressure oscillation in rocket combustion chamber could be suppressed within a short time period. Decay time and other parameters for the evaluation of stabilization ability of an engine to external perturbation have been analyzed to quantify stabilization capacity of engine, in other words, dynamic stability margin. Baffle not covering flame zone enough which can be considered as collision region of injector wasn't be able to suppress external perturbation sufficiently. The limit of combustion stability margin of engine is assumed to be 50 mm length baffle of the KSR-III engine.

Numerical Analysis of the Whole Field Flow in a Centrifugal Fan for Performance Enhancement - The Effect of Boundary Layer Fences of Different Configurations

  • Karanth, K. Vasudeva;Sharma, N. Yagnesh
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.110-120
    • /
    • 2009
  • Generally the fluid flows within the centrifugal impeller passage as a decelerating flow with an adverse pressure gradient along the stream wise path. This flow tends to be in a state of instability with flow separation zones on the suction surface and on the front shroud. Hence several experimental attempts were earlier made to assess the efficacy of using boundary layer fences to trip the flow in the regions of separation and to make the flow align itself into stream wise direction so that the losses could be minimized and overall efficiency of the diffusion process in the fan could be increased. With the development of CFD, an extensive numerical whole field analysis of the effect of boundary layer fences in discrete regions of suspected separation points is possible. But it is found from the literature that there have been no significant attempts to use this tool to explore numerically the utility of the fences on the flow field. This paper attempts to explore the effect of boundary layer fences corresponding to various geometrical configurations on the impeller as well as on the diffuser. It is shown from the analysis that the fences located on the impellers near the trailing edge on pressure side and suction side improves the static pressure recovery across the fan. Fences provided at the radial mid-span on the pressure side of the diffuser vane and near the leading edge and trailing edge of the suction side of diffuser vanes also improve the static pressure recovery across the fan.