• Title/Summary/Keyword: zone instability

Search Result 108, Processing Time 0.03 seconds

An algorithm for quantifying dynamic buckling and post-buckling behavior of delaminated FRP plates with a rectangular hole stiffened by smart (SMA) stitches

  • Soltanieh, Ghazaleh;Yam, Michael C.H.
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.745-760
    • /
    • 2021
  • Dynamic buckling of structure is one of the failure modes that needs to be considered since it may result in catastrophic failure of the structure in a short period of time. For a thin fiber-reinforced polymer (FRP) plate under compression, buckling is an inherent hazard which will be intensified by the existence of defects like holes, cracks, and delamination. On the other hand, the growth of the delamination is another prime concern for thin FRP plates. In the current paper, reinforcing the plates against buckling is realized by using SMA wires in the form of stitches. A numerical framework is proposed to simulate the dynamic instability emphasizing the effect of the SMA stitches in suppressing delamination growth. The suggested algorithm is more accurate than the other methods when considering the transformation point of the SMA wires and the modeling of the cohesive zone using simple and yet reliable technique. The computational design of the method by producing the line by line orders leads to a simple algorithm for simulating the super-elastic behavior. The Lagoudas constitutive model of the SMA material is implemented in the form of user material subroutines (VUMAT). The normal bilinear spring model is used to reproduce the cohesive zone behavior. The nonlinear finite element formulation is programmed into FORTRAN using the Newmark-beta numerical time-integration approach. The obtained results are compared with the results obtained by the finite element method using ABAQUS/Explicit solver. The obtained results by the proposed algorithm and those by ABAQUS are in good agreement.

Effect of water distribution on shear strength of compacted loess

  • Kang-ze, Yuan;Wan-kui, Ni;Xiang-fei, Lu;Hai-man, Wang
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.519-527
    • /
    • 2022
  • Shear failure in soil is the primary cause of most geotechnical structure failures or instability. Soil water content is a significant factor affecting soil shear strength. In this study, the shear strength of samples with different water contents was tested. The shear strength, cohesion, and internal friction angle decreased with increasing water content. Based on the variation of cohesion and internal friction angle, the water content zone was divided into a high-water content zone and low-water content zone with a threshold water content of 15.05%. Cohesion and internal friction angle have a good linear relationship with water content in both zones. Environmental Scanning Electron Microscopy (ESEM) test presented that the aggregates size of the compacted loess gradually increases with increasing water content. Meanwhile, the clay in the compacted loess forms a matric that envelops around the surface of the aggregates and fills the inter-aggregates pores. A quantitative analysis of bound water and free water under different water contents using a nuclear magnetic resonance (NMR) test was carried out. The threshold water content between bound water and free water was slightly below the plastic limit, which is consistent with the results of shear strength parameters. Combined with the T2 distributions obtained by NMR, one can define a T2 relaxation time of 1.58 ms as the boundary point for bound water distribution without free water. Finally, the effects of bound water and free water on shear strength parameters were analyzed using linear regression analysis.

Activation Energy Asymptotics Revisited (II) - Diffusion-Flame Structure in the Premixed-Flame Regime (활성화에너지점근법의 재고찰 (II) - 예혼합화염영역에서 확산화염구조)

  • Kim, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.4
    • /
    • pp.35-46
    • /
    • 2004
  • Activation energy asymptotics (AEA) for Linan#s premixed-flame regime is revisited in this paper. First, the detailed AEA procedure for the premixed-flame regime is demonstrated, so that the practitioners of AEA could easily apply the method to their own problems. In addition, the controversies surrounding the premixed-flame regime, namely the closure controversy and fast-time instability paradox, are explained. Finally, the limitation of AEA, mainly arising from the wrong prediction of fuel leakage through the reaction zone, is examined and the Zel#dovich-Linan kinetics is introduced as an alternative to meet the needs of modern combustion analysis, where the detailed chemical structure of flame is demanded.

  • PDF

기계가공면의 소성 스트레인에 관한 연구

  • 김태영;신형곤;소율영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.54-58
    • /
    • 1991
  • It is well known that metal cutting leaves a plastically deformed layer in the machined surface. This residual phenomenon affects in various forms the physical properties of machined components such as the fatigue strength, the dimensional instability, microcracks, and the stress corrosion cracking. These physical properties, so called surface integrity, are very important for designing highly stressed and critically loaded components. Typical plastic strains in the machined surface are very difficult to measure, since they are located within a very short distance from the surface and they change very rapidly. There is an alternative way to determine the residual strain in plastically deformed materials by measuring the grain size after a subsequent recrystallization process. Although, this technique has been successfully applied by several researchers to find the plastic zone around notches and cracks in various materials and welding beads, few works have been reported using the recrystallization method to determine the residual strains in machined surface. Therefore, the purpose of this investigation Is to explore the effectiveness of the recrystallization technique in machining applications, and in particular, to find the effect of cutting parameters, i.e., depth of cut and rake angle on the plastic strains.

  • PDF

Characteristics of Rotating Stall in a Centrifugal Compressor with Vaned Diffuser (원심압축기 베인 디퓨저에서의 선회실속 특성)

  • Lee, Du-Yeol;Kang, Chang-Sik;Shin, You-Hwan;Kim, Kwang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.42-48
    • /
    • 2002
  • In this study, the instability of a centrifugal compressor with vaned diffuser was investigated. During unstable operation of the test compressor, pressure fluctuations at different diffuser radius ratios were measured by using high frequency pressure transducers. Two different types of stall, mild and deep stalls, were observed alternately and irregularly at some flow rates where the compressor performance was steeply deteriorated. In this transient zone, the size of rotating stall cell was estimated through the wavelet transform analysis. It was about 45 percents of rotor circumferential space at 300 rpm and not dependent on flow rate.

Characteristics of Rotating Stall in a Centrifugal Compressor with Vaned Diffuser (원심압축기 베인 디퓨저에서의 선회실속 특성)

  • Lee, Du-Yeol;Kang, Chang-Sik;Shin, You-Hwan;Kim, Kwang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.99-105
    • /
    • 2001
  • In this study, the instability of a centrifugal compressor with vaned diffuser was investigated. During unstable operation of the test compressor, pressure fluctuations at different diffuser radius ratios were measured by using high frequency pressure transducers. Two different types of stall, mild and deep stall, were observed alternately and irregularly at some flow rate where the compressor performance was steeply deteriorated. In this transient zone, the size of rotating stall cell was estimated through the Wavelet transform analysis. It was about 45 percents of rotor circumferential space at 3000 rpm and not dependent on flow rate.

  • PDF

Acoustic Response of Hydrogen/Liquid Oxygen Flame in Stagnation-Point Flow (정체점 유동장에서 수소-액체산소 화염의 음향파 응답 특성)

  • Park, Sung-Woo;Chung, Suk-Ho;Kim, Hong-Jip
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.440-446
    • /
    • 2003
  • Steady-state structure and acoustic pressure responses of GH$_2$-LOx diffusion flames in stagnation-point flow configuration have been studied numerically with a detailed chemistry to investigate the acoustic instabilities. The Rayleigh criterion is adopted to judge the instability of the GH$_2$-LOx flames from amplification and attenuation responses at various acoustic pressure oscillation conditions for near-equilibrium to near-extinction regimes. Steady state flame structure showed that the chain branching zone is embedded in surrounding two recombination zones. The acoustic responses of GH$_2$-LOx flame showed that the responses in near-extinction regime always have amplification effect regardless of realistic acoustic frequency. That is, GH$_2$-LOx flame near-extinction is much sensitive to pressure perturbation because of the strong effect of a finite-chemistry.

A Study of Ion-Hybrid Instability in the Mixed Plasma (혼합 플라즈마 내의 이온-이온 교잡파의 불안정성 연구)

  • 김수용
    • Journal of Astronomy and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.81-88
    • /
    • 1987
  • There are more oxygen ions than hydrogen ions in the auroral field zone. We consider both analytic and numerical simulation study of the heating of hydrogen and oxygen ions by auroral electrons. With the low drift speed of electron beams, the ion-ion hybrid wave becomes unstable instead of the lower hydrid wave so that a preferential heating of oxygen ions occurs.

  • PDF

Ground Stability Interpretation of the Five-storied Stone Pagoda at the Muryangsa Temple, Korea; An Examined by the Nondestructive Survey (비파괴 탐사를 이용한 무량사오층석탑 지반안정해석)

  • Chae, Sang-Jeong;Suh, Man-Cheol
    • Journal of Conservation Science
    • /
    • v.20
    • /
    • pp.43-54
    • /
    • 2007
  • The Muryangsa temple five-storied stone pagoda (Treasure No. 185) was geographically located in the area of the Baekje Kingdom. The architectural style of the Muryangsa temple five-storied stone pagoda is the pagoda at the early Goryeo Dynasty that was succeeded technique of the Baekje Kingdom and form of the Shilla Kingdom. Because this pagoda is located outside during old time that it received serious petrological and biological weathering in rock blocks and occurred the center subsidence in the upper capstone. This study executed ground stability interpretation in order to know what central subsidence in the upper capstone occurred for soft ground. The ground stability interpretation used seismic survey, electrical resistivity survey and GPR survey by non-destructive method. As the result, the ground appeared in the condition which is good. Specially, high resistance zone appeared from electric resistivity survey which come to seem with ground reinforcement harden. Consequently, central subsidence condition in the upper capstone is not by the instability of ground, and is judged with the thing by the structure instability in rock blocks over the upper capstone. This will be applied basic data with the long-term monitoring or preservation countermeasure of the pagoda.

  • PDF

Stability Analysis of the Concave Zone in a Slope Considering Rainfall (강우를 고려한 사면내 요부(凹部)에서의 안정성 해석)

  • Sagong Myung;Lim Kyoung-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.77-86
    • /
    • 2005
  • Since slope sliding and loss of railway triggered by a rainfall produce instability in the operation of trains, a proper method to estimate the slope stability considering rainfall Is required. from the field study, sliding induced by rainfall depends on the engineering properties of soils, three dimensional aspect of the slope, rainfall intensity and geological conditions of the soil layers. In this study, among various types of sliding, slope Instability caused by the surface runoff water at the concave zones in a slope is investigated. The depth of runoff water is calculated by using the Rational method and Manning equation. The occurrence of runoff water is evaluated by a comparison between the calculated infiltration rate and rainfall intensity. Pressure heads which can be calculated from the modified Iverson model are used to calculate the factor of safety along the vertical depth of the slope. The modified Iverson model considers the depth of runoff water, thus the maximum hydraulic gradient along the depth of slope is greater than one.