• 제목/요약/키워드: zirconium alloys

검색결과 88건 처리시간 0.024초

Pulsed laser welding of Zr-1%Nb alloy

  • Elkin, Maxim A.;Kiselev, Alexey S.;Slobodyan, Mikhail S.
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.776-783
    • /
    • 2019
  • Laser welding is usually a more effective method than electron-beam one since a vacuum chamber is not required. It is important for joining Zr-1%Nb (E110) alloy in a manufacturing process of nuclear fuel rods. In the present work, effect of energy parameters of pulsed laser welding on properties of butt joints of sheets with a thickness of 0.5 mm is investigated. The most efficient combination has been found (8-11 J pulse energy, 10-14 ms pulse duration, 780-810 W peak pulse power, 3 Hz pulse frequency, 1.12 mm/s welding speed). The results show that ultimate strength under static loading can not be used as a quality criterion for zirconium alloys welds. Increased shielding gas flow rate does not allow to protect weld metal totally and contributes to defect formation without using special nozzles. Several types of imperfections of the welds have been found, but the major problem is branching microcracks on the surface of the welds. It is difficult to identify the cause of their appearance without additional research on improving the welding zone protection (gas composition and flow rate as well as nozzle configuration) and studying the hydrogen content in the welds.

Ti-15Mo-5Zr-3Al 합금의 고온산화 (High Temperature Oxidation of Ti-15Mo-5Zr-3Al Alloy)

  • 우지호;김종성;백종현;이동복
    • 한국표면공학회지
    • /
    • 제31권5호
    • /
    • pp.278-285
    • /
    • 1998
  • Alloys of Ti-15Mo-5Zr-3Al(wt%) were oxidized in air between 700 and $900^{\circ}C$. It was found that the oxidation resistance is much better than that of either commercially available pure Ti-6Al-4V(wt%) alloys. The oxide scales were primarily composed of thick Ti-ox-ides which were formed by the inward diffusion of oxygen from the atmosphere. At higher temperatures a thin $\alpha$-$Al_2O_3$ layer was formed on Ti-oxides owing to the outward diffusion of Al from the base alloys. Molybdenum, the noblest metal among the alloy components, was predominantly present behind the oxide-substrate interface. Zirconium, an oxygen active metal, was present at both the oxide layer and the substrate.

  • PDF

Nb 첨가 핵연료피복관용 Zr 신합금의 부식특성 연구 (Study on Corrosion Characteristic of New Nb-containing Zr based Alloys for Fuel cladding)

  • 최병권;하승원;정용환
    • 한국재료학회지
    • /
    • 제11권5호
    • /
    • pp.405-412
    • /
    • 2001
  • 본 연구에서는 $360^{\circ}C$ 물 및 $360^{\circ}C$, 70ppm LiOH 수용액 분위기의 static autoclave를 이용하여 새롭게 개발한 Zr 신합금 (Zr-0.4Nb-0.8Sn-xFeCrMn, Zr-0.2Nb-1.1Sn-xFeCrMn, Zr-1.0Nb-xFeCu) 의 부식 특성을 평가하였다. 합금의 미세구조를 광학현미경과 TEM을 이용하여 관찰하였고, 부식시험 중에 생성된 산화막은 SEM과 XRD를 이용하여 단면 및 결정구조를 조사하였다. 부식시험 결과, 3종의 합금 모두 $360^{\circ}C$ 물 분위기보다 $360^{\circ}C$, 70ppm LiOH 수용액 분위기에서의 부식저항성이 감소하였으며 특히, High Nb 합금의 경우 급격한 가속 부식현상을 나타내었다. 합금원소 첨가량과 관련하여 Nb의 함량을 고용도 이내로 줄이고 Sn을 적절히 첨가한 조성의 합금이 Sn을 첨가하지 않고 고용도 이상의 Nb을 가진 합금보다 우수한 부식저항성을 나타내었다. 또한 최종열처리가 부식에 미치는 영향의 경우에, 완전재결정 조직의 합금이 부분재결정 조직을 가진 합금보다 부식저항성이 감소되었는데 이는 기지조직에서 석출하늘 제 2상의 크기 및 분포에 의한 영향으로 사료된다.

  • PDF

다중금속복합층 핵연료 피복관의 필거링 공정에 관한 유한 요소 해석 연구 (Finite Element Analysis of Pilgering Process of Multi-Metallic Layer Composite Fuel Cladding)

  • 김태용;이정현;김지현
    • 한국압력기기공학회 논문집
    • /
    • 제13권2호
    • /
    • pp.75-83
    • /
    • 2017
  • In severe accident conditions of light water reactors, the loss of coolant may cause problems in integrity of zirconium fuel cladding. Under the condition of the loss of coolant, the zirconium fuel cladding can be exposed to high temperature steam and reacted with them by producing of hydrogen, which is caused by the failure in oxidation resistance of zirconium cladding materials during the loss of coolant accident scenarios. In order to avoid these problems, we develop a multi-metallic layered composite (MMLC) fuel cladding which compromises between the neutronic advantages of zirconium-based alloys and the accident-tolerance of non-zirconium-based metallic materials. Cold pilgering process is a common tube manufacturing process, which is complex material forming operation in highly non-steady state, where the materials undergo a long series of deformation resulting in both diameter and thickness reduction. During the cold pilgering process, MMLC claddings need to reduce the outside diameter and wall thickness. However, multi-layers of the tube are expected to occur different deformation processes because each layer has different mechanical properties. To improve the utilization of the pilgering process, 3-dimensional computational analyses have been made using a finite element modeling technique. We also analyze the dimensional change, strain and stress distribution at MMLC tube by considering the behavior of rolls such as stroke rate and feed rate.

마그네슘용탕의 니켈 함량에 미치는 알루미늄, 망간 및 지르코늄의 영향 (Effect of Aluminum, Manganese, and Zirconium on the Content of Nickel in Molten Magnesium)

  • 정대영;문영훈;문병기;박원욱;손근용
    • 한국주조공학회지
    • /
    • 제35권1호
    • /
    • pp.8-14
    • /
    • 2015
  • Variations of nickel contents and microstructures in molten magnesium alloys on the addition of aluminum, zirconium, and manganese have been investigated. Specimens were prepared by melting under $SF_6$ and $CO_2$ atmosphere and casting into a disc of 29 mm diameter with 7~10 mm thickness from the melt acquired at the top of crucible. Before casting, the molten metal was stirred for 3 minutes after each addition of alloying elements and maintained for 30 minutes for settling down. Results showed that zirconium did not significantly affect the content of nickel while aluminum remarkably reduced it by forming $Al_3Ni_2$ phase. When manganese are added to Mg-1wt%Ni alloy along with aluminum, both elements remarkably reduced the content of nickel. The addition of 1.5 wt% manganese to Mg-1wt%Ni alloy containing aluminum further reduced the content of nickel by more than 30%, during which an additional intermetallic phase $Al_{10}Mn_3Ni$ was precipitated in the molten magnesium.

Electrochemical Behaviors of Binary Ti-Zr Alloys

  • Oh, M.Y.;Kim, W.G.;Choe, H.C.;Ko, Y.M.
    • Corrosion Science and Technology
    • /
    • 제8권2호
    • /
    • pp.89-92
    • /
    • 2009
  • Pure Ti as well as Ti-6Al-4V alloy exhibit excellent properties for dental implant applications. However, for a better biocompatibility it seems important to avoid in the composition the presence of V due to the toxic effects of V ion release. Thus Al and V free and composed of non-toxic element such as Nb, Zr alloys as biomaterials have been developed. Especially, Zr contains to same family in periodic table as Ti. The addition of Zr to Ti alloy has an excellent mechanical properties, good corrosion resistance, and biocompatibility. In this study, the electrochemical characteristics of Ti-Zr alloys for biomaterials have been investigated using by electrochemical methods. Methods: Ti-Zr(10, 20, 30 and 40 wt%) alloys were prepared by arc melting and homogenized for 24 hr at $1000^{\circ}C$ in argon atmosphere. Phase constitutions and microstructure of the specimens were characterized by XRD, OM and SEM. The corrosion properties of the specimens were examined through potentiodynamic test (potential range of -1500 ~ 2000 mV), potentiostatic test (const. potential of 300 mV) in artificial saliva solution by potentiostat (EG&G Co, PARSTAT 2273. USA).

핵연료피복관용 Zr 합금의 부식특성 및 산화막 미세구조 (Corrosion Characteristics and Oxide Microstructure of Zirconium Alloys for Nuclear Fuel Cladding)

  • 정용환;백종혁;김선재;김경호;최병권;정연호
    • 한국재료학회지
    • /
    • 제8권4호
    • /
    • pp.368-374
    • /
    • 1998
  • Zr합금의 부식거동을 평가하기 위하여 여러 가지 1족 알칼리 수산화물 용액 (LiOH, NaOH, KOH, RbOH, CsOH)에서 autoclave를 이용하여 300일까지 부식시험을 실시하였다. 산화막 특성은 TEM을 이용하여 천이전과 천이후에 동일 산화막두께를 갖도록 준비된 부식시편에 대해 수행되었다. 실험결과를 고려할 때 금속이온은 부식과정에서 매우 중요한 역할을 하는 것으로 사료된다. 즉 $Li^+$$Zr^{4+}$ 치환하여 산소농도는 증가하고 부식은 가속되는데 산화막 내부의 barrier layer에서 $Li^-$치환이 부식을 제어하는 것으로 판단된다.동일 두께의 산화막 일지라도 산화막의 구조는 모두 다르다. 32.5mmol LiOH에서 생성된 산화막온 천이전,후에 관계 없이 많은 기공이 함유된 등축정 구조를 갖는다. 반면에 NaOH에서 생성된 산화막은 천이전에는 주상정 구조를 갖지만 천이후에는 다공성의 등축정 구조로 바뀐다. KOH용액에서는 천이전에는 주상정과 비정질 산화막의 이중 구조를 갖지만 천이후에는 비정질 산화막은 사라직 전반적으로 주상정 구조가 형성된다. 부식거동과 산화막 관찰로부터 금속이온의 산화막내 치환이 부식속도와 산화막 미세구조를 지어한다는 것을 알 수 있었다.

  • PDF