• Title/Summary/Keyword: zinc-oxide

Search Result 1,310, Processing Time 0.031 seconds

Characterization of zinc tin oxide thin films by UHV RF magnetron co-sputter deposition

  • Hong, Seunghwan;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.307.1-307.1
    • /
    • 2016
  • Amorphous zinc tin oxide (ZTO) thin films are being widely studied for a variety electronic applications such as the transparent conducting oxide (TCO) in the field of photoelectric elements and thin film transistors (TFTs). Thin film transistors (TFTs) with transparent amorphous oxide semiconductors (TAOS) represent a major advance in the field of thin film electronics. Examples of TAOS materials include zinc tin oxide (ZTO), indium gallium zinc oxide (IGZO), indium zinc oxide, and indium zinc tin oxide. Among them, ZTO has good optical and electrical properties (high transmittance and larger than 3eV band gap energy). Furthermore ZTO does not contain indium or gallium and is relatively inexpensive and non-toxic. In this study, ZTO thin films were formed by UHV RF magnetron co-sputter deposition on silicon substrates and sapphires. The films were deposited from ZnO and SnO2 target in an RF argon and oxygen plasma. The deposition condition of ZTO thin films were controlled by RF power and post anneal temperature using rapid thermal annealing (RTA). The deposited and annealed films were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), ultraviolet and visible light (UV-VIS) spectrophotometer.

  • PDF

Effect of Aluminum on Nitrogen Solubility in Zinc Oxide: Density Functional Theory (산화 아연에서의 질소 용해도에 대한 알루미늄의 효과 : 밀도 범함수 이론)

  • Kim, Dae-Hee;Lee, Ga-Won;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.639-643
    • /
    • 2011
  • Zinc oxide as an optoelectronic device material was studied to utilize its wide band gap of 3.37 eV and high exciton biding energy of 60 meV. Using anti-site nitrogen to generate p-type zinc oxide has shown a deep acceptor level and low solubility. To increase the nitrogen solubility in zinc oxide, group 13 elements (aluminum, gallium, and indium) was co-added to nitrogen. The effect of aluminum on nitrogen solubility in a $3{\times}3{\times}2$ zinc oxide super cell containing 72 atoms was investigated using density functional theory with hybrid functionals of Heyd, Scuseria, and Ernzerhof (HSE). Aluminum and nitrogen were substituted for zinc and oxygen sites in the super cell, respectively. The band gap of the undoped super cell was calculated to be 3.36 eV from the density of states, and was in good agreement with the experimentally obtained value. Formation energies of a nitrogen molecule and nitric oxide in the zinc oxide super cell in zinc-rich conditions were lower than those in oxygen-rich conditions. When the number of nitrogen molecules near the aluminum increased from one to four in the super cell, their formation energies decreased to approach the valence band maximum to some degree. However, the acceptor level of nitrogen in zinc oxide with the co-incorporation of aluminum was still deep.

A study on c-axis preferred orientation at a various substrate temperature of ZnO thin film deposited by RF magnetron sputtering (RF magnetron sputtering법으로 ZnO박막 제조시 기판온도에 따른 c축 배향성에 관한 연구)

  • 이종덕;송준태
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.196-203
    • /
    • 1996
  • The highly c-axis oriented zinc oxide thin films were deposited on Sapphire(0001) substrates by reactive RF magnetron sputtering. The characteristics of zinc oxide thin films on RF power, substrate-target distance, and substrate temperature were investigated by XRD, SEM and EDX analyses. The physical characteristics of zinc oxide thin films changed with various deposition conditions. The higher substrate temperatures were, The better crystallinity of zinc oxide thin films. The highly c-axis oriented zinc oxide thin films were obtained at sputter pressure 5mTorr, rf power 200W, substrate temperature 350.deg. C, substrate-target distance 5.5cm. In these conditions, the resistivity of zinc oxide thin films deposited on pt/sapphire was 12.196*10$^{9}$ [.ohm.cm].

  • PDF

Solution-Processed Zinc-Tin Oxide Thin-Film Transistors for Integrated Circuits

  • Kim, Kwang-Ho;Park, Sung-Kyu;Kim, Yong-Hoon;Kim, Hyun-Soo;Oh, Min-Suk;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.534-536
    • /
    • 2009
  • We have fabricated solution-processed zinc-tin oxide thin film transistors (TFTs) and simple circuits on glass substrates. We report a solutionprocessed zinc-tin oxide TFTs on silicon wafer with mobility greater than 9 $cm^2/V{\cdot}s$ (W/L = 100/5 ${\mu}m$) and threshold voltage variation of less than 1 V after bias-stressing. Also, we fabricated solution-processed zinc-tin oxide circuits including inverters and 7-stage ring oscillators fabricated on glass substrates using the developed zinc-tin oxide TFTs.

  • PDF

Ammonium Chloride Solution Leaching of Crude Zinc Oxide Recovered from Reduction of EAF′s Dust

  • Youn, Ki-Byoung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.365-369
    • /
    • 2001
  • EAF's dust has been treated mainly by pyrometallurgical reduction process in rotary kiln furnace to recover valuable metal elements such as Zn and to avoid the disposal of hazardous materials to waste. Recently, hydrometallurgical eletrowinning of zinc from a zinc-amino chloride solution obtained by the leaching of EAF's dust was developed to recover high grade zinc metal from EAF’s dust. But there are some disadvantages in each process such as difficulty of operation condition control and sticking problem in kiln process and low extractability and recovery of zinc owing to insoluble zinc-ferrite in electrowinning process. We propose a new combined process of pyrometallurgical one and hydrometallurgical one to treat EAF's dust efficiently and economically. In this study, ammonium chloride solution leaching of crude zinc oxide recovered from reduction of EAF's dust was carried out to find out the efficiency of zinc extraction from it and the possibility for performance of eletrowinning in the proposed process. Effects of various leaching variables ruck as leaching temperature, concentration of leaching solution and leaching time were investigated. And the leaching results of the crude zinc oxide were compared with those of EAF's dust. The extraction percents of zinc in ammonium chloride solution leaching of the crude zinc oxide recovered from reduction of EAF's dust were above 80% after 60 minutes of leaching under the leaching condition of 4M NH$_4$CI concentration and above leaching temperature of 7$0^{\circ}C$. And the concentrations of zinc in the leached solution were obtained above 50g/$\ell$. The activation energy calculated for zinc extraction in NH$_4$CI leaching was 58.1 KJ/㏖ for EAF's dust and 15.8 KJ/㏖ for the crude zinc oxide recovered from reduction of EAF's dust.

  • PDF

Studies on Slip and Mechanical Properties of Thermoplastic Polyurethane Elastomer with Carboxylic acid and Nano zinc oxide (Carboxylic acid와 nano zinc oxide를 도입한 열가소성 폴리우레탄 탄성체의 슬립특성 및 기계적 물성에 관한 연구)

  • Shin, Hyun Deung;Kim, Dong Ho;Kim, Gu Ni
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • We synthesized thermoplastic polyurethane elastomer(TPU) with acid group and nano zinc oxide, and characterized their mechanical properties, thermal properties, contact angle and grip property. The effects of the zinc oxide content and size on the physical property of TPU were investigated. When the nano zinc oxide was introduced in TPU with acid group, it had excellent mechanical properties and grip by formation of hydrogen and ionic bonding. The wet slip of TPU with zinc oxide was increased continuously as ionization rate increased due to increase of hydrophilicity and ionic interaction, and mechanical properties were increased with increasing ionization rate up to 50%.

The growth of zinc oxide particles by coagulation in aerosol reactor (에어로졸 반응기에서 산화아연 입자의 응집 성장)

  • Lee, Jong Ho;Song, Shin Ae;Park, Seung Bin
    • Particle and aerosol research
    • /
    • v.4 no.2
    • /
    • pp.69-75
    • /
    • 2008
  • Nanosize ZnO particles were prepared by oxidation of zinc vapor and the particle growth was modeled by a coagulation model by assuming that the characteristic time for reaction was much shorter than coagulation time and residence time (${\tau}_{reaction}{\ll}{\tau}_{coagulation}{\ll}{\tau}_{residence}$). Experimental measurement of zinc oxide particles diameter was consistent with the predicted result from the coagulation model. For practical purpose of predicting zinc oxide size in areosol reactor, the constant kernel solution is concluded to be sufficient, Uniqueness of nano-scale property of zinc oxide was confirmed by the higher photocatalytic activity of zinc oxide than nanosize titania particles.

  • PDF

In Vitro Cytotoxicity of Zinc Oxide Nanoparticles in Cultured Statens Seruminstitut Rabbit Cornea Cells

  • Lee, Handule;Park, Kwangsik
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.287-294
    • /
    • 2019
  • The possibility of eye exposure for workers participating in manufacturing of nanoparticles or consumers using products containing nanoparticles has been reported, but toxicity studies on the eye are scarce. In this study, cytotoxicity of five nanoparticles including silver, ceria, silica, titanium and zinc were tested using Statens Seruminstitut Rabbit Cornea (SIRC) cells. When cells were treated with nanoparticles with concentrations of $1-100{\mu}g/mL$ for 24 hr, zinc oxide nanoparticles showed higher toxicity to cornea cells. $LC_{50}$ of zinc oxide nanoparticles was less than $25{\mu}g/mL$ but those of other nanoparticles could not be calculated in this test, which means more than $100{\mu}g/mL$. Generation of reactive oxygen species was observed, and expression of apoptosis related biomarkers including Bax and Bcl-2 were changed after treatment of zinc oxide nanoparticles, while no other significant toxicity-related changes were observed in cornea cells treated with Ag, $CeO_2$, $SiO_2$ and $TiO_2$ nanoparticles.

Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus

  • Kasraei, Shahin;Sami, Lida;Hendi, Sareh;AliKhani, Mohammad-Yousef;Rezaei-Soufi, Loghman;Khamverdi, Zahra
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.2
    • /
    • pp.109-114
    • /
    • 2014
  • Objectives: Recurrent caries was partly ascribed to lack of antibacterial properties in composite resin. Silver and zinc nanoparticles are considered to be broad-spectrum antibacterial agents. The aim of the present study was to evaluate the antibacterial properties of composite resins containing 1% silver and zinc-oxide nanoparticles on Streptococcus mutans and Lactobacillus. Materials and Methods: Ninety discoid tablets containing 0%, 1% nano-silver and 1% nano zinc-oxide particles were prepared from flowable composite resin (n = 30). The antibacterial properties of composite resin discs were evaluated by direct contact test. Diluted solutions of Streptococcus mutans (PTCC 1683) and Lactobacillus (PTCC 1643) were prepared. 0.01 mL of each bacterial species was separately placed on the discs. The discs were transferred to liquid culture media and were incubated at $37^{\circ}C$ for 8 hr. 0.01 mL of each solution was cultured on blood agar and the colonies were counted. Data was analyzed with Kruskall-Wallis and Mann-Whitney U tests. Results: Composites containing nano zinc-oxide particles or silver nanoparticles exhibited higher antibacterial activity against Streptococcus mutans and Lactobacillus compared to the control group (p < 0.05). The effect of zinc-oxide on Streptococcus mutans was significantly higher than that of silver (p < 0.05). There were no significant differences in the antibacterial activity against Lactobacillus between composites containing silver nanoparticles and those containing zinc-oxide nanoparticles. Conclusions: Composite resins containing silver or zinc-oxide nanoparticles exhibited antibacterial activity against Streptococcus mutans and Lactobacillus.

A study on the zinc oxide crystalline powder synthesized by zinc chloride solution and sodium-based alkali precipitants (염화아연 수용액과 나트륨계 알칼리 침전제 종류에 따라 합성한 산화아연 결정 분말에 대한 연구)

  • Dae-Weon Kim;Dae-Hwan Jang;Bo-Ram Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.1
    • /
    • pp.15-21
    • /
    • 2023
  • To prepare zinc oxide powder, three types of sodium-based alkali precipitants such as NaOH, Na2CO3, NaOH/NaHCO3 were compared to the differences in the manufacturing process of zinc oxide powder from zinc precipitate products like intermediates with the consideration of thermodynamic reaction. The prepared zinc precipitate products by the reaction with the sodium-based alkali precipitant were confirmed to respectively hydroxy zinc chloride (Zn5(OH)8Cl2·H2O) and zinc carbonate hydroxide (Zn5(OH)6(CO3)2·H2O) from XRD analysis. Zinc oxide particles were compared in heat treatment at 800℃ according to sodium-based alkali precipitants. The mixed NaOH and NaHCO3 of alkali precipitant reaction was contributed to synthesize the more uniform zinc oxide particles.