• Title/Summary/Keyword: zinc pot

Search Result 36, Processing Time 0.027 seconds

Investigation of Heavy Metal Contents in Ganoderma lucidum(Fr.) Karst (영지버섯중의 중금속 함량)

  • 하영득;이인선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.2
    • /
    • pp.187-193
    • /
    • 1990
  • Ganoderma lucidum has been widely used not only as ingredients in herbal medicine but also in pharmacological soft drinks. The author collected for analysis of content of 8 kinds of heavy metal(Cd, pb, Hg, Cu, Mn, Fe, As) in soil and cluture soil in an around the Taegu area including Sang Ju, Non Gong, Keum Ho, and Weol Bae. THe toxic content in Gaoderma lucidum showed relatively low level as in cadmium lead mercury arsenic : 0.8-0.13ppm 0.17-1.43ppm 0.02-0.32ppm 0.01-0.19ppm respectively : in copper mangenese zinc and iron : 0.93-4.29ppm, 0.37-2.18ppm 1.02-1.65ppm, 4.57-11.04ppm those grown in soil showed higher percentages of content than those grown on logs in lead copper zinc and iron by 43.2% 68.6%, 20.3% and 43.2% respectively. The content of heavy metals in those grown in soil and culture soil tended to be higher in the areas near factories of industrial complexes especially in manganese and iron. The content of heavy metals in soil and culture soil appeared lower than the mean values of Korean Soil. No interrelationship was found in the content of heavy metals between those of Ganoderma lucidum grown on logs and those grown in soil. In case of pot cultivation however the mushroom spawns are grown originally in soil which seems to influence the degree of content of heavy metals of media.

  • PDF

White Light -Emitting Diodes with Multi-Shell Quantum Dots

  • Kim, Kyung-Nam;Han, Chang-Soo;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.92-92
    • /
    • 2010
  • Replacing the existing illumination with solid-state lighting devices, such as light-emitting diodes (LEDs) are expected to reduce energy consumption and environmental pollution as they provide better efficiency and longer lifetimes. Currently, white light emitting diodes are composed of UV or blue LED with down-converting materials such as highly luminescent phosphors White light-emitting diodes (LED) were fabricated with multi-shell nanocrystal quantum dots for enhanced luminance and improved stability over time. Multi-shell quantum dots (QDs) were synthesized through one pot process by using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. As prepared, the multi-shell QD has cubic lattice of zinc-blend structure with semi-spherical shape with quantum yield of higher than 60 % in solution. Further, highly fluorescent multi-shell QD was deposited on the blue LED, which resulted in QD-based white LED with high luminance with excellent color rendering properties.

  • PDF

Effects of Liming on Uptake to Crops of Heavy Metals in Soils amended with Industrial Sewage Sludge (하수오니 시용토양에서 작물의 중금속 흡수이행에 미치는 석회의 영향)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.1
    • /
    • pp.38-44
    • /
    • 2002
  • The effect of lime on plant availability of heavy metals in soils amended with industrial sewage sludge (ISS) or pig manure compost (PMC) was investigated. A pot experiment with Altari radish (Raphanus sativus) was conducted. Industrial sewage sludge and Pig manure compost were added at 25 and 50 Mg/ha, and lime was added at 3 Mg/ha. Heavy metal contents of ISS treated soils after experiment were higher than those in control (NPK plot) and PMC treatment. Specially, the contents of copper, zinc, nickel and chromium in the 50 Mg/ha of ISS treated soils were higher 12$\sim$48 times than those in control. Copper, zinc, and nickel contents in Altari radish leaves cultivated at the ISS treated soil exceeded the critical levels of plant toxicity. Copper, zinc, and nickel contents in Altari radish loaves and roots cultivated at the ISS treated soil were reduced by the addition of lime. Copper, zinc, and nickel contents in Altari radish loaves were negatively correlated with soil pH after experiment. It concluded that liming would reduce the uptake of heavy metals by plants and be a temporary method of reclamation at the highly heavy metal accumulated soils by ISS.

Development of Single-Frame PIV Velocity Field Measurement Technique Using a High Resolution CCD Camera (고해상도 CCD카메라를 이용한 Single-Frame PIV 속도장 측정기법 개발)

  • Lee, Sang-Joon;Shin, Dae-Sig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Although commercial PIV systems have been widely used for the non-intrusive velocity field measurement of fluid flows, they are still under development and have considerable room for improvement. In this study, a single-frame double-exposure PIV system using a high-resolution CCD camera was developed. A pulsed Nd:Yag laser and high-resolution CCD camera were synchronized by a home-made control circuit. In order to resolve the directional ambiguity problem encountered in the single-frame PIV technique, the second particle image was genuinely shifted in the CCD sensor array during the time interval dt. The velocity vector field was determined by calculating the displacement vector at each interrogation window using cross-correlation with 50% overlapping. In order to check the effect of spatial resolution of CCD camera on the accuracy of PIV velocity field measurement, the developed PIV system with three different resolution modes of the CCD camera (512 ${\times}$ 512, lK ${\times}$ IK, 2K ${\times}$ 2K) was applied to a turbulent flow which simulate the Zn plating process of a steel strip. The experimental model consists of a snout and a moving belt. Aluminum flakes about $1{\mu}m$ diameter were used as scattering particles for the liquid flow in the zinc pot and the gas flow above the zinc surface was seeded with atomized olive oil with an average diameter of 1-$3{\mu}m$. Velocity field measurements were carried out at the strip speed $V_s$=1.0 m/s. The 2K ${\times}$ 2K high-resolution PIV technique was significantly superior compared to the smaller pixel resolution PIV system. For the cases of 512 ${\times}$ 512 and 1K ${\times}$ 1K pixel resolution PIV system, it was difficult to get accurate flow structure of viscous flow near the wall and small vortex structure in the region of large velocity gradient.

Organic amendment-driven removal and speciation of metals using wormwood in two contrasting soils near an abandoned copper mine

  • Ro, Hee-Myong;Choi, Hyo-Jung;Yun, Seok-In;Park, Ji-Suk
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.775-786
    • /
    • 2018
  • To test the hypothesis that humic acid (HA), anaerobically digested pig slurry filtrate (APS), and their combination would differently affect the chemical speciation and extractability of metals (cadmium, copper, and zinc) and their uptake by plants, we conducted a pot experiment using wormwood in two texturally contrasting soils (sandy loam and clay loam) collected from a field near an abandoned Cu mine. Four treatments were laid out: HA at $ 23.5g\;kg^{-1}$ (HA), APS at $330mL\;kg^{-1}$ (APS), HA at $ 23.5g\;kg^{-1}$ and APS at $330mL\;kg^{-1}$ (HA + APS), and a control. Each treatment affected the chemical speciation and mobility of the metals, and thereby resulting in variable patterns of plant biomass yield and metal uptake. The APS supported plant growth by increasing nutrient availability. HA supported or hindered plant growth by impacting the soil's water and nutrient retention capacity and aeration, in a soil texture-dependent manner, while consistently enhancing the immobilization of heavy metals. Temporal increases in whole-plant dry matter yield and metal accumulation suggested that the plants were capable of metal hyperaccumulation. The results were discussed in terms of the mobility of metals and plant growth and corroborated by the $^{15}N$ recovery of soil- and plant-N pools under H and HS treatments. Therefore, for effective phytoremediation of polluted soils, an appropriate combination of plant growth promoters (APS) and chelating agents (HA) should be predetermined at the site where chemical stabilization of pollutants is desired.

Ecological Effects of Zinc and Lead on Plants (식물체에 미치는 연, 아연 ( Pb, Zn ) 의 영향)

  • Park, Bong-Kyu;Kim, Ok-Kyung
    • The Korean Journal of Ecology
    • /
    • v.6 no.2
    • /
    • pp.98-105
    • /
    • 1983
  • This study was carried out to investigate the effects of Zn and Pb concentration on seed germination and plant growth in water and soil culture, and the frequency of chlorosis invegetation and the relationship between plants and soil in the Sambo mine. The inhibition of germination were observed in 1000ppm of Zn, 10ppm of Pb and 5000ppm of Zn + Pb, but germination was more stimulated in 10ppm of Zn than control. The symptoms of chlorosis and abnormality were occurred in plant leaves grown to the soils treated with more than 1000ppm of Pb. Reasons of chlorosis were considered as an antagonistic effect of other metals towards uptake of iron by the plant in Zn treatment. The contents of Zn and Pb in fruits were lower than those of leaves, and that was remarked in case of Pb. With increasing rate of Zn and Pb treatment, chemical components of soils in pot culture were accompanied by slight decrease in pH, total nitorgen and exchangeable K. Chlorotic individuals of 10 species were shown in the areas of the Sambo mine. Chlorotic symptoms were especially extensive and severe in Sophora angustifolia, Populus alba, Spiraea prunifolia, Amorpha fruticota, Lespedeza bicolor and Salix dependens. Plants in the investigated areas grew in soils containing Zn of 311ppm and Pb of 151ppm on an average, and accumulated Zn of 2084ppm and Pb of 49ppm.

  • PDF

Spectral Response of Red Lettuce with Zinc Uptake: Pot Experiment in Heavy Metal Contaminated Soil (아연섭취에 따른 적상추의 분광학적 반응: 중금속 오염토양에서의 반응실험)

  • Shin, Ji Hye;Yu, Jaehyung;Kim, Jieun;Koh, Sang-Mo;Lee, Bum Han
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • This study investigates the spectral response of red lettuce (Lactuca sativa var crispa L.) to Zn concentration. The control group and the experimental groups treated with 1 mM(ZnT1), 5 mM(ZnT2), 10 mM(ZnT3), 50 mM(ZnT4), and 100 mM(ZnT5) were prepared for a pot experiment. Then, Zn concentration and spectral reflectance were measured for the different levels of Zn concentration in red lettuce. The Zn concentration of the control group had the range of 134-181 mg/kg, which was within the normal range of Zn concentration in uncontaminated crops. However, Zn concentration in the experimental group gradually increased with an increase in concentration of Zn injection. The spectral reflectance of red lettuce showed high peak in the red band due to anthocyanin, high reflectance in the infrared band due to the scattering effect of the cell structure, and absorption features associated with water. As Zn concentration in red lettuce leaves increased, the reflectance increased in the green and red bands and the reflectance decreased in the infrared band. The correlation analysis between Zn concentration and spectral reflectance showed that the reflectance of 700-1300 nm had a significant negative correlation with Zn concentration. The spectral band is a wavelength region closely related to the cell structure in the leaf, indicating possible cell destruction of leaf structure due to increased Zn concentration. In particular, 700-800 nm reflectance of the infrared band showed the strongest correlation with the Zn concentration. This study could be used to investigate the heavy metal contamination in soil around mining and agriculture area by spectroscopically recognizing heavy metal pollution of plant.

Bioaccumulation Patterns and Responses of Fleece-flower; Persicaria thunbergii to Cadmium and Lead

  • Kim, In-Sung;Kyung Hong kang;Lee, Eun-Ju
    • 한국생태학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.119-125
    • /
    • 2002
  • Application of phytoremediation in the polluted area to remove undesirable materials is a complex and difficult subject without detailed investigation and experimentation. We investigated the accumulation patterns of cadmium and lead in plants naturally grown, the bioavailability of plants to accumulate these toxic metals and the responses of P. thunbergii to cadmium and lead. The soil samples contained detectable lead (<17.5$\mu\textrm{g}$/g), whereas cadmium was not detected in the soils of study area. The whole body of Persicaria thunbergii contained detectable lead (<320.8$\mu\textrm{g}$/g) but cadmium was detected only in the stem (<7.4$\mu\textrm{g}$/g) and root (<10.4$\mu\textrm{g}$/g) of P. thunbergii. Cadmium was not detected in Trapa japonica and Nymphoides peltata, whereas lead was detected in T. japonica (<323.7$\mu\textrm{g}$/g) and N. peltata (<177.5$\mu\textrm{g}$/g). Correlation coefficient between lead content in soil and in these plant samples represented positive correlation. The total content of lead in each plant sample increased in the order of N.peltata$\leq$P.thunbergii

  • PDF

Bioaccumulation Patterns and Responses of Fleece-flower; Persicaria thunbergii to Cadmium and Lead

  • Kim, In Sung;Kang, Kyung Hong;Lee, Eun Ju
    • The Korean Journal of Ecology
    • /
    • v.25 no.4
    • /
    • pp.253-259
    • /
    • 2002
  • Application of phytoremediation in the polluted area to remove undesirable materials is a complex and difficult subject without detailed investigation and experimentation. We investigated the accumulation patterns of cadmium and lead in plants naturally grown, the bioavailability of plants to accumulate these toxic metals and the responses of P. thunbergii to cadmium and lead. The soil samples contained detectable lead (<$17.5_\mu$g/g), whereas cadmium was not detected in the soils of study area. The whole body of Persicaria thunbergii contained detectable lead (<320.$8_\mu$g/g/g) but cadmium was detected only in the stem (<7.$4_\mu$g/g/g) and root (<10.$4_\mu$g/g/g) of P. thunbergii. Cadmium was not detected in Trapa japonica and Nymphoides peltata, whereas lead was detected in T. japonica (<323.$7_\mu$g/g/g) and N. peltata (<177.$5_\mu$g/g/g). Correlation coefficient between lead content in soil and in these plant samples represented positive correlation. The total content of lead in each plant sample increased in the order of N. peltata$\leq$P. thunbergii

Crosstalk of Zn in Combination with Other Fertilizers Underpins Interactive Effects and Induces Resistance in Tomato Plant against Early Blight Disease

  • Awan, Zoia Arshad;Shoaib, Amna;Khan, Kashif Ali
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.330-340
    • /
    • 2019
  • The present study was undertaken to evaluate the integrated effect of zinc (Zn) with other nutrients in managing early blight (EB) disease in tomato. A pot experiment was carried out with basal application of the recommended level of macronutrients [nitrogen, phosphorus and potassium (NPK)] and micronutrients [magnesium (Mg) and boron (B)] in bilateral combination with Zn (2.5 and 5.0 mg/kg) in a completely randomized deigned in replicates. Results revealed that interactive effect of Zn with Mg or B was often futile and in some cases synergistic. Zn with NPK yield synergistic outcome, therefore EB disease was managed significantly (disease incidence: 25% and percent severity index: 13%), which resulted in an efficient signaling network that reciprocally controls nutrient acquisition and uses with improved growth and development in a tomato plant. Thus, crosstalk and convergence of mechanisms in metabolic pathways resulted in induction of resistance in tomato plant against a pathogen which significantly improved photosynthetic pigment, total phenolics, total protein content and defense-related enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL)]. The tremendous increase in total phenolics and PAL activity suggesting their additive effect on salicylic acid which may help the plant to systemically induce resistance against pathogen attack. It was concluded that interactive effect of Zn (5.0 mg/kg) with NPK significantly managed EB disease and showed positive effect on growth, physiological and biochemical attributes therefor use of Zn + NPK is simple and credible efforts to combat Alternaria stress in tomato plants.