• 제목/요약/키워드: zif268

검색결과 3건 처리시간 0.014초

Ritanserin, a 5HT2/1C Receptor Antagonist, Does Not Block Cocaine-Induced Behavioral Alterations and zif268 mRNA Expression in the Striatum of the Rats

  • Choe, Eun-Sang;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권5호
    • /
    • pp.355-359
    • /
    • 2000
  • Cocaine induces immediate early gene expression and behavioral changes by blocking dopamine transporters in the terminals of nigrostriatal neurons in the striatum. The pharmacological role of serotonin 2/1C (5HT2/1C) receptors in cocaine-induced expression of zif268 (NGFI-A, egr1 and Krox-24) mRNA, a member of the zinc finger, was investigated using quantitative in situ hybridization histochemistry in vivo. Behavioral alterations induced by cocaine were also monitored in relation with blockade of the receptors. Systemic injection of ritanserin (1 mg/kg, s.c.), a 5HT2/1C receptor antagonist, did not reverse behavioral alterations and zif268 mRNA gene expression induced by 15 mg/kg cocaine, i.p., in the dorsal and ventral striatum. These data indicate that ritanserin-sensitive 5HT2/1C receptors are not necessary for cocaine-induced behavioral alterations and zif268 mRNA gene expression in the striatum.

  • PDF

Amperozide Decreases Cocaine-Induced Increase in Behavior and Immediate Early Gene Expression in the Dorsal Striatum

  • Choe, Eun-Sang;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권5호
    • /
    • pp.361-367
    • /
    • 2000
  • Cocaine functions as indirect dopamine and serotonin (5-hydroxytryptamine, 5HT) agonists and induces genomic and behavioral alterations in the striatum. Previously we demonstrated that ritanserin, a 5HT2/1C receptor antagonist, is not responsible for cocaine-induced behavioral alterations and zif268 mRNA gene expression in the striatum (see the previous paper in this issue). In this study, it was hypothesized that dopamine and 5HT2/1C receptors are required for cocaine-induced behavioral alterations and c-fos and zif268 mRNA expression. This hypothesis was addressed by infusing amperozide which antagonizes both 5HT2/1C and dopamine receptors and was analyzed using the quantitative in situ hybridization histochemistry in vivo. Systemic injection of amperozide (5 mg/kg, s.c.) significantly blocked increase in behavior, c-fos and zif268 mRNA expression induced by 15 mg/kg cocaine, i.p., in the dorsal striatum. These data suggest that dopamine and 5HT2/1C receptors are necessary for cocaine-induced behavioral alterations and immediate early gene expression in the dorsal striatum.

  • PDF

Structural Analyses of Zinc Finger Domains for Specific Interactions with DNA

  • Eom, Ki Seong;Cheong, Jin Sung;Lee, Seung Jae
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2019-2029
    • /
    • 2016
  • Zinc finger proteins are among the most extensively applied metalloproteins in the field of biotechnology owing to their unique structural and functional aspects as transcriptional and translational regulators. The classical zinc fingers are the largest family of zinc proteins and they provide critical roles in physiological systems from prokaryotes to eukaryotes. Two cysteine and two histidine residues ($Cys_2His_2$) coordinate to the zinc ion for the structural functions to generate a ${\beta}{\beta}{\alpha}$ fold, and this secondary structure supports specific interactions with their binding partners, including DNA, RNA, lipids, proteins, and small molecules. In this account, the structural similarity and differences of well-known $Cys_2His_2$-type zinc fingers such as zinc interaction factor 268 (ZIF268), transcription factor IIIA (TFIIIA), GAGA, and Ros will be explained. These proteins perform their specific roles in species from archaea to eukaryotes and they show significant structural similarity; however, their aligned amino acids present low sequence homology. These zinc finger proteins have different numbers of domains for their structural roles to maintain biological progress through transcriptional regulations from exogenous stresses. The superimposed structures of these finger domains provide interesting details when these fingers are applied to specific gene binding and editing. The structural information in this study will aid in the selection of unique types of zinc finger applications in vivo and in vitro approaches, because biophysical backgrounds including complex structures and binding affinities aid in the protein design area.