• Title/Summary/Keyword: zeta-potential

Search Result 617, Processing Time 0.027 seconds

Determination of Optimum Coagulant Dosage for Effective Water Treatement of Chyinyang Lake - The Effect of Coagulant Dosing on Removal of Algae- (진양호소수의 효과적인 정수처리를 위한 최적응집제 주입량 결정 -조류제거를 위한 응집제 주입효과-)

  • 이원규;조주식;이홍재;임영성;허종수
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.625-631
    • /
    • 1999
  • This study was performed to determine the optimum coagulant dosing for effective treatment of raw water in Chinyang lake. Removal rates of algae and characteristics of the water according to coagulants dosage were investigated by treatment with Microcystis aeruginosa, which is a kind of blue-green algae, to the raw water below 5NTU. The coagulants dosage for maximum removal rate of algae were 30 mg/$\ell$ of Alum, 30 mg/$\ell$ of PAC and 10 mg/$\ell$ of PACS, respectively. The removal rate of algae in 30 mg/$\ell$ of PAC was highest as 85% compared with the other treatments. At the point of maximum removal rate of algae, the removal rates of turbidity were 34%, 66% and 22% in Alum, PAC and PACS, respectively. Residual Al was decreased depend upon decreasing turtidity in water by treatment of Alum or PAC, but decreased depend upon increasing turbidity in water by treatment of PACS. The removal rate of ${Mn}_{2+}$ in water was high in the order of Alum, PAC and PACS treatment. And ${Fe}_{2+}$ in water was not changed by treatemnt of these coagulants. Particle numbers distributions according to the particle size of suspended solids that were not precipitated at 8 min. of settling time after treatment of coagulants dosage for the maximum removal rate of algae were investigated. Most of the particle sizes were below 30 $\mu$m and particle numbers distributions below 10 $\mu$m were 64%, 56% and 66% by treatment of Alum, PAC and PACS, respectively. Zeta potential was in the range of -6.1~-9.7 mV at optimum coagulants dosage for algae removal.

  • PDF

Preparation and Evaluation of Ketoprofen-incorporated Solid Lipid Nanoparticles (SLN) (케토프로펜을 함유하는 고형 지질 나노파티클의 제조 및 평가)

  • Baek, Myoung-Ki;Lee, Sang-Young;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.4
    • /
    • pp.245-256
    • /
    • 1996
  • Solid lipid nanoparticles (SLN) have been developed as a new drug delivery system. Although many particulate drug carriers, such as microsphere, liposome, niosome, emulsion, etc. have been introduced, they have some disadvantage; low efficiency of incorporation and stability, lack of reproducibility, and so on. Meanwhile, SLN as a new drug delivery system is known to entrap rugs with a high efficiency and a good reproducibility. Moreover, small size SLN can circulate in blood for a prolonged time. Although many preparation methods were introduced, microfluidization method is recommended to be the most useful. This study was attempted to prepare and evaluate ketoprofen-incorporated SLNs (keto-SLN), which were prepared by two methods, ultrasonication and microfluidization. Keto-SLN was evaluated by measurement of particle size and zeta potential, efficacy of entrapment, sedimentation volume, in virto release pattern. The mean particle size was about $0.1\;{\mu}m$, and the size was dependent on the type and the amount of emulsifier. Zeta potential was negative, $-9{\sim}-13mV$ and entrapment efficacy was very high and stability was good for at least 60 days in the respect of particle size and sedimentation volume ratio. Analgesic effect was also determined as well as pharmacokinetic parameters. The former was comparable to that of that of ketoprofen loaded suspension (keto-sus) and the latter revealed that consistent with the delayed release of keto-SLN. $T_{max}$ was longer than keto-sus. Therefore, keto-SLN was favourable dosage forms in the field of drug delivery system such as anti-cancer, analgesics and anti-inflammatory agents.

  • PDF

A control dispersion of $TiO_2$ nano powder for electronic paper of electrophoresis (전기영동형 전자종이를 위한 $TiO_2$ 나노분말의 분산 제어)

  • Kim, Jung-Hee;Oh, Hyo-Jin;Lee, Nam-Hee;Hwang, Jong-Sun;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.324-327
    • /
    • 2005
  • An electrophoretic display using $TiO_2$ particles is the most promising candidate because it offers various advantages such as ink-on-paper appearance, good contrast ratio, wide viewing angle, image stability in the off-state and extremely low power consumption. The core technology of electrophoretic display is the dispersion controlling of $TiO_2$ nano particles in nonaqueous solution. To prepare an ink for electronic paper using electrophoretic properties of $TiO_2$ nano particles, cyclohexane with low dielectric constant and transparency, polyethylene for producing polymer coating layer which reduces apparent gravity of $TiO_2$, and $TiO_2$ powders were mixed together by planetary-mill. The zeta-potential value of $TiO_2$ particles in cyclohexane was measured about -40mV, but was measured over -110mV by dispersant attached to polyethylene-coated $TiO_2$ surface. Prepared electronic ink was filled in cross patterned micro-wall with $200{\mu}m$ in width and $40{\mu}m$ in height on ITO glass designed by photolithography. The response time of electronic paper evaluated by mobility of $TiO_2$ particle between micro-walls was measured 0.067sec, but the drift velocity from reflectance wave form during reverse from of electronic ink was measured 0.07cm/sec.

  • PDF

Assessment of the Adsorption Capacity of Cadmium and Arsenic onto Paper Mill Sludge Using Batch Experiment (회분식 실험을 통한 제지슬러지의 카드뮴 및 비소 흡착능 평가)

  • Baek, Jongchan;Yeo, Seulki;Park, Junboum;Back, Jonghwan;Song, Youngwoo;Igarashi, T.;Tabelin, C.B.
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.46-53
    • /
    • 2014
  • The purpose of this study is to promote utilization of paper mill sludge as an adsorbent for stabilizing heavy metals in contaminated water by measuring the adsorption capacity of paper mill sludge for cadmium and arsenic. To measure adsorption capacity of paper mill sludge, sorption isotherm experiments were analyzed by Langmuir and Freundlich isotherm models. Also, two methods of chemical modifications were applied to improve the adsorption capacities of paper-mill-sludge: the first method used sodium hydroxide (NaOH), called PMS-1, and the second method used the NaOH and tartaric acid ($C_4H_6O_6$) together, called PMS-2. For Cd adsorption, PMS-1 presented the increase of reactivity while PMS-2 presented the decline of reactivity compared to that of untreated paper-mill-sludge. In case of As adsorption, both PMS-1 and PMS-2 showed the decrease of adsorption capacities. This is because zeta-potential of paper mill sludge was changed to more negative values during chemical modification process due to the hydroxyl group in NaOH and the carboxyl group in $C_4H_6O_6$, respectively. Therefore, we may conclude that the chemical treatment process increases adsorption capacity of paper mill sludge for cation heavy metals such as Cd but not for As.

Characteristics of $SiO_2$ Scale Removal by Chemical Cleaning in Reverse Osmosis Membrane Process (역삼투막 공정에서 화학적 세정에 의한 $SiO_2$ scale 제거특성)

  • DockKo, Seok;Lee, Hyung-Jib
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.93-101
    • /
    • 2010
  • Reverse osmosis (RO) membranes have been widely used for desalination as well as water and wastewater treatment facilities. Cleaning process is important to maintain stable operation as well as prevention of membrane fouling. Purpose of this research is to analyze electrostatistic and chemical characteristics after cleaning of RO membrane against $SiO_2$ scale. Four RO membranes of polyamide are used and examined about effect of chemical cleaning. EDTA (ethylene diamine tetraacetic acid) and SDS (sodium dodecil sulfate) and NaOH are applied for cleaning process after operation in synthetic water. Then, cleaning was performed with chemicals such concentration as 6hr, 12hr and 24hr, respectively. As a result, transmittances of FT-IR of four membranes are compared at each cleaning concentration. Ta/Tv shows difference of chemical composition between new membrane and cleaning membrane after cleaning. Type B of RO membrane is turned out to be most vulnerable to cleaning among four membranes. In terms of zeta potential, new membrane has -16 mV to +6 mV on pH while scaled membrane has -18 mV to 2 mV. However, it changed -23mV to 0.9 mV after cleaning. In comparison with existing salt rejection of RO membranes after cleaning, the rejection of the membranes goes down 0.7% maximum. Though cleaning changes the characteristics of membrane surface, it does not greatly affect salt rejection. pH is a critical factor to flux change in PA (polyamide) membrane.

Influence of Alkylation on Interface and Thermal Conductivity of Multi-walled Carbon Nanotubes-reinforced Epoxy Resin (알킬화가 다중벽탄소나노튜브로 강인화된 에폭시수지의 계면 및 열전도도에 미치는 영향)

  • Heo, Gun-Young;Rhee, Kyong-Yop;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.548-552
    • /
    • 2011
  • Two functionalization methods, i.e., acid treatment and chemical amidation were performed to prepare the functionalized multi-walled carbon nanotubes (MWCNT), and the properties of epoxy/functionalized MWCNT composites were investigated and compared. Fourier transform infrared spectroscopy (FTIR) was used to confirm the surface functionality of the MWCNT obtained by the functionalization methods. The effects of the MWCNT functionalization on the interface and thermal conductivity were studied by zeta potential analyzer, scanning electron microscope and thermal conductivity analyzer. From these results, it was confirmed that the thermal conductivity of the epoxy/MWCNT composites could be increased by grafting with dodecylamine. This could be interpreted by relatively strong dispersion forces of the grafting MWCNT with dodecylamine in DGEBF epoxy resin. These results were in good agreement with the results that the zeta potential value of the grafting MWCNT with dodecylamine has a higher negative value than that of MWCNT with acid treatment.

Stability of Various Liposome Formulation Containing the Phytochemical-Peptide Derivatives (파이토케미컬 펩타이드 유도체를 포함하는 다양한 리포좀 제형의 안정성)

  • Han, Byung Seok;Kim, Su Young;Lee, Kyung Rok;Seo, Hyo Hyun;Moh, Sang Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.135-143
    • /
    • 2016
  • In this study, we investigated the stability of the liposome formulation containing the phytochemicals-peptide derivatives. Among liposomes prepared using lecithins or surfactant under various conditions, the most stable niosome was obtained by using sodium palmitoyl sarcosinate and macadamia intergrifolia seed oil. The stability of peptide-containing niosome (N9) was confirmed by the TEM images. The N9 was stable at 0 and 45 degrees by Turbiscan, and its particle size was 95.7 nm. The N9 showed zeta potential value of -78.19 mV, and peptide-inclusion rate of 65.2% by BCA assay.

Surface Characteristics of Concrete According to Types of Formworks (거푸집 종류에 따른 콘크리트 표면 특성)

  • Park, Se-Eon;Choi, Jeong-Il;Lee, Bong-Kee;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.499-505
    • /
    • 2021
  • The purpose of this study is to investigate experimentally the physical/chemical properties of concrete surface according to types of formworks. Plywood formwork and coated plywood formwork were prepared. In addition, plywood formwork with sand paper was prepared to simulate deterioration of concrete or rough surface of concrete. Normal concrete was used in this study. The properties of concrete surface were investigated by visual inspection, scanning electron microscopy and energy-dispersive X-ray spectroscopy techniques, elemental mapping, 2D and 3D surface profile measurement, and zeta potential measurement. Test results showed that concrete in a coated formwork had smooth surface and concrete in the formwork with sand paper had rough surface. It was observed that properties of concrete surface depended on types of formworks. Furthermore, differences in surface roughness were significantly higher than those in chemical compositions and zeta potential.

Design and Characterization of Ascorbyl Glucoside loaded Solid Lipid Nanoparticles to improve skin penetration (피부 투과 개선을 위한 고형지질나노입자내 Ascorbyl glucoside 봉입 설계 및 특성화)

  • Yeo, Sooho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.662-668
    • /
    • 2021
  • The aim of the present study was to design ascorbyl glucoside (AG) loaded solid lipid nanoparticles (SLNs) to improve skin penetration of AG. AG loaded SLNs were prepared using double emulsion method. The prepared AG loaded SLNs investigated particle characteristics (particle size, polydispersity index, zeta potential, loading capacity). Skin penetration study was carried out using SkinEthic RHE as one of the reconstructed human epidermis models. The mean particle size and zeta potential of SLNs were 172.65 - 347.19 nm and -22.90 - -41.20 mV, respectively. The loading capacity of AG loaded SLNs demonstrated that loading efficiency and loading amount were ranged from 44.18% to 57.77% and 12.83% to 16.15%, respectively. The results of penetration showed that all SLNs enhanced the skin penetration of AG and the amount of AG from SLNs were approximately 3.7 - 7.4 times higher than that from AG solution. Therefore, AG loaded SLN might be a promising topical drug delivery system.

Electrophoretic Characteristics of the Clay Particles Affected by Chemical Species of Leachate (매립지 침출수 화학종에 따른 점토입자의 전기영동 특성)

  • Kim, Jong-Yun;Han, Sang-Jae;Kim, Soo-Sam;Park, Jea-Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.217-228
    • /
    • 2009
  • In case of application of electrophoresis method for leakage restoration of waste impoundment, main points of consideration were to evaluate the mobility of clay particles by electrophoretic force and capacity of leakage repair in leachate electrolyte system contained with various chemical species. However, the flocculation phenomena of clay particles induced by electrochemical interaction between various chemical species and clay particles would cause the big problems in electrophoresis method. Therefore, a series of laboratory tests such as one-dimensional electrophoresis and gravitational experiments were carried out in order to identify the specific chemical species affected flocculation of clay particles and the range of chemical concentration in leachate. In addition, the characteristics of clay particle behavior with chemical species and concentration range in leachate were analized using the concept of the settling velocity, zeta potential, and electrophoretic velocity.