• Title/Summary/Keyword: zeta전위

Search Result 146, Processing Time 0.028 seconds

Influence of Ionic Strength, pH, and Complex-forming Anions on the Adsorption of Cesium-137 and Strontium-90 by Kaolinite (카올리나이트에 의한 세슘-137 및 스트론튬-90 흡착에 대한 이온강도, pH, 복합체-형성 음이온의 영향)

  • Jeong, Chan Ho;Cho, Young Hwan;Hahn, Pil Soo
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.11-20
    • /
    • 1998
  • The effects of the major cations ($Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$), complex-forming anions ($SO_4{^{2-}}$, $HCO_3{^-}$), and solution pH on the adsorption of $^{137}Cs$ and $^{90}Sr$ by kaolinite in groundwater chemistry were investigated. Three-dimensional Kd modelling designed by a statistical method was attempted to compare the relative effect among hydrated radii, charge and concentration of competing cations on the adsorption of Cs and Sr. The modelling results indicate that the hydrated radii of competing cations is the most important factor, and then their charges and concentrations are also important factors in order. The property of zeta potential of kaolinite particles was discussed in terms of the amphoteric reactions of a kaolinite surface affecting the adsorption of Cs and Sr. The ionic strength of competing cations on the adsorption of Cs and Sr exerts a greater effect than the solution pH. The sorption behaviour of Sr on kaolinite is also highly dependent on the concentration of bicarbonate. The speciation of Sr and the saturation state of a secondary phase were thermodynamically calculated by a computer program, WATEQ4F. This indicates that the change in solution pH with the concentration of bicarbonate and the precipitation of a strontianite ($SrCO_3$) are major factors controlling Sr adsorption behaviour in the presence of bicarbonate ion.

  • PDF

A Study on Fouling Characteristics and Applicability of Fouling Reducer in Submerged MBR Process (침지형 MBR공정에서 파울링 특성과 파울링 완화제의 적용성에 관한 연구)

  • Park, Jun Won;Park, Hong June;Kim, Min Ho;Oh, Yong Keol;Park, Chul Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.371-380
    • /
    • 2013
  • Though MBR process has many advantages, the greatest risk factors in operating MBR process are occurrence of membrane fouling and decrease of flux. It is very difficult to find exact mechanism due to complex influence by many effects, although there have been recently many studies of membrane fouling. The purposes of this study are firstly evaluating bioreactor of lab-scale and micro-filtration hollow fiber membrane, secondly investigating correlation between foulants affecting membrane performance and membrane fouling, and lastly evaluating various parameters affecting fouling and applicability of membrane fouling reducer. This study found that TMP was increasing rapidly and showed 0.32 bar and the average of flux was 88 LMH. EPS concentration tends not to change much above MLSS concentration (6,000 mg/L). However, EPS concentration variation is wide below MLSS concentration (6,000 mg/L). Also, from results of membrane surface condition and element analysis using SEM/EDX, carbon and fluorine were founded to be the highest percentage in membrane because of characteristics of membrane material. In operating continuously, inorganic fouling was generated by increase of these inorganic substances such as $Al^{3+}$ and $Mg^{2+}$. Lastly, the best filtration performance was obtained for 0.03 mg MFR/mg MLSS by results of particle size, zeta potential, $SCOD_{cr}$, EPS and MLSS concentration.

Semi-continuous Emulsion Polymerization of n-Butyl acrylate/Methyl metacrylate using Environmental-Friendly LE-Type Nonionic Surfactant (환경친화적 LE-형 비이온계면활성제를 사용한 반연속식 말브틸-아크릴레이트/메틸메타-아크릴레이트 유화중합에 관한 연구)

  • Kim, Chul-Ung
    • Clean Technology
    • /
    • v.11 no.1
    • /
    • pp.41-50
    • /
    • 2005
  • In this study, semibatch emulsion copolymerization of n-BA as adhesive component and MMA as coagulant component were carried out for the stable acrylic polymer latex in aqueous phase for polymer cement using LE-type nonionic surfactant as environmental friendly surfactant. The stable polymer emulsion was obtained with the increases of chain length(n) of this surfactant. The effect on the amount of LE-50 as nonionic surfactant were showed that the concentration of polymer latex were increased by increasing the amount of LE-50, whereas the average particle size were decreased by increasing the amount. The addition of functional monomer in initial reactor charge showed a significant effect on the final polymer concentration and the latex particle size. The single polymerization of each n-BA or MMA showed a very low concentration of polymer latex and very big particle size due to coagulation. In the polymerization composed of mixed monomer with MMA and n-BA, the larger the ratio of MMA to n-BA in the copolymers, the greater the amount of coagulum produced. It was found that a stable copolymers were obtained in the range of 15-35 % of n-BA. Moreover, incorporation of some functional monomers in addition to of main monomers became more stable polymer latex. Through DSC and IR analysis, the final polymer latex was composed by MMA/n-BA/AA/AM with a single Tg depending on the reaction conditions. As a result, the conditions of this acrylic polymerization could also be effectively controlled to get the desired final products.

  • PDF

Effect of pH on Physical Properties of Triethanolamine-Ester Quaternary Ammonium Salt Cationic Surfactant System (수용액의 pH가 Triethanolamine-Ester Quaternary Ammonium Salt 양이온 계면활성제 시스템의 물성에 미치는 영향에 관한 연구)

  • Kim, JiSung;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.479-485
    • /
    • 2009
  • In this study, basic physical properties were measured for ASCO EQ85 cationic surfactant of triethanolamine-ester quaternary ammonium salt and effect of pH on softening performance on fabrics was investigated using zeta potential measurement and adsorption experiment by quartz crystal microbalance. The CMC of the surfactant was near $3{\times}10^{-3}mol/L$ and the surface tension at CMC was about 40 mN/m. The interfacial tension measurement between 1 wt% aqueous solution and n-dodecane measured by spinning drop tensiometer showed that interfacial tension slightly increased with an increase in pH but the equilibration time was not affected by pH. The surfactant adsorption was found to increase with an increase in surfactant concentration and was also affected by pH of surfactant solution. The friction factor for fabrics treated with ASCO EQ85 surfactant was shown to increase with pH and better softening effect was found under acidic conditions. Half-life for foams generated with ASCO EQ85 surfactant solution increased with pH, which indicated an increase in foam stability with pH.

Preparation and Its Stability of a Coenzyme Q10 Nanoemulsion by High Pressure Homogenization with Different Valve Type Conditions (초고압균질기 밸브 타입에 따른 coenzyme Q10 나노에멀젼의 제조 및 안정성)

  • Lim, Ji-Sun;Gang, Ho-Jin;Yoon, Sung-Woo;Kim, Hyeong-Min;Suk, Jong-Woo;Kim, Do-Un;Lim, Jae-Kag
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.565-570
    • /
    • 2010
  • A coenzyme Q10 nanoemulsion was prepared using high pressure homogenization with different valve type conditions (A, B, and C) and cycle numbers (1, 2, and 3). The particle size, transmittance, zeta potential, and coenzyme Q10 content of the prepared coenzyme Q10 nanoemulsion were measured. The stability of the prepared coenzyme Q10 nanoemulsion was evaluated on heating ($95^{\circ}C$), freezing ($-20^{\circ}C$), and different pH (2-10) conditions. Also, the prepared coenzyme Q10 nanoemulsion was stored at different temperatures of 4, 25, and $40^{\circ}C$ for 12 weeks to evaluate its storage stability. In this study, the optimal conditions of high pressure homogenization for the preparation of a coenzyme Q10 nanoemulsion were identified to be 150 MPa, C valve, and a cycle number of 3. The results showed that the prepared coenzyme Q10 nanoemulsion had an average particle size of 40 nm, generated no deposits or floating matter when stored at either 4 or $25^{\circ}C$ for 12 weeks, and displayed excellent dispersibility and transparency when processed at different pHs (4-10) or heating ($95^{\circ}C$) and, freezing ($-20^{\circ}C$) conditions. Our results indicated that a coenzyme Q10 nanoemulsion prepared by high pressure homogenization can be used for preparing beverages in the food industry.

Flotation for Recycling of a Waste Water Filtered from Molybdenite Tailings (몰리브덴 선광광미 응집여과액 재활용을 위한 부유선별 특성)

  • Park, Chul-Hyun;Jeon, Ho-Seok;Han, Oh-Hyung;Kim, Byoung-Gon;Baek, Sang-Ho;Kim, Hak-Sun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.235-242
    • /
    • 2010
  • Froth flotation using the residual water in the end of flotation process has been performed through controlling of pH. IEP (isoelectric point) of molybdenite and quartz in distilled water was below pH 3 and pH 2.7, respectively and the stabilized range was pH 5~10. In case of a suspension in reusing water, zeta potential of molybdenite decreased to below -10 mV or less at over pH 4 due to residual flocculants. As result of pH control, flotation efficiency in the alkaline conditions was deteriorated by flocculation, resulting from expanded polymer chain, ion bridge of the divalent metal cations ($Ca^{2+}$), and hydrophobic interactions between the nonpolar site of polymer/the hydrophobic areas of the particle surfaces. However, the weak acid conditions (pH 5.5~6) improved the efficiency of flotation as hydrogen ions neutralize polymer chains and then weakened its function. In cleans after rougher flotation, the Mo grade of 52.7% and recovery of 90.1% could be successfully obtained under the conditions of 20 g/t kerosene, 50 g/t AF65, 300 g/t $Na_2SiO_3$, pH 5.5 and 2 cleaning times. Hence, we developed a technique which can continuously supply waste water filtered from tailings into the grinding-rougher-cleaning processes.

Flocculation Kinetics Using Fe(III) Coagulant in Advanced Water Treatment: The Effect of Sulfate Ion (상수처리시 Fe(III) 응집제를 이용한 응집동력학에 관한 연구 : 황산이온의 영향)

  • 강임석;이병헌
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.367-377
    • /
    • 1995
  • The study of flocculation kinetics is of fundamental interest in the field of water treatment, because rational study of the factors affecting the coagulation process should be based on the rate of particle growth. The effect of sulfate on flocculation kinetics were examined using ferric nitrate as a coagulant to coagulate kaolin clay in water under several experimental conditions. Both the particle size distribution data obtained from the AIA and the on-line measurement of turbidity fluctuation by the PDA were used to measure flocculation kinetics. Results show that sulfate ion added to the kaolin suspension played an important role in the flocculation process, not only improving flocculation kinetics at more acidic pH levels but also changing surface charge of particles. The kinetics of flocculation were improved mainly by the enhanced rate and extent of Fe(III) precipitation attributed to the addition of sulfate, and thereby, better interparticle collision frequency, but little by the charge reductions resulting from the sulfate addition. The increase in sulfate concentration beyond $3\times10^{-4}M (up to 2\times10^{-3}M)$ did not induce further improvement in flocculation kinetics, although the higher concentrations of sulfate ion substantially increased the negative ZP value of particles. Key Words : Flocculation Kinetics, Fe(III) Coagulant, Sulfate ion, Turbidity Fluctuation.

  • PDF

pH Solubility Properties and Improved Dissolution of Pranlukast as an Poorly Water-soluble Model Drug Prepared by Spray-drying with Plasdone S-630 (플라스돈 S-630과 함께 분무건조된 모델 난용성 약물로서 프란루카스트의 pH 용해도 특성 및 용출률 개선)

  • Cho, Won-Hyung;Lee, Young-Hyun;Song, Byung-Joo;Yoo, Seok-Cheol;Lim, Dong-Kyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.277-283
    • /
    • 2011
  • Solid dispersion is mainly used for improved dissolution of poorly water-soluble drugs. Solid dispersion of pranlukast was prepared by spray-drying with plasdone S-630. When pH of water was high, pranlukast was highly soluble in the solubility experiment of solid dispersions with varying pH. The particle size of pranlukast particles in solid dispersions was measured to be in nanometers scale based on particle size analysis. Zeta-potential analysis confirmed the negative charge of solid dispersion. SEM was used to observe the surface of solid dispersion, which confirmed spherical morphology, DSC and XRD confirmed the amorphous nature of solid dispersions. The in vitro test was carried out to find improved dissolution rate of pranlukast solid dispersion in simulated juice gastric and a controlled experiment was carried out to compare pranlukast solid dispersions with a conventional drug (Onon$^{(R)}$), These results showed the dissolution properties of pranlukast solid dispersions prepared by spray drying proper for the oral pharmaceutical formulation.

Preparation and Characterization of Chitosan-coated PLGA Nanoparticle (키토산이 코팅된 PLGA 나노입자의 제조 및 특성)

  • Yu, Su-Gyeong;Nah, Jae-Woon;Jeong, Gyeong-Won
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.509-515
    • /
    • 2021
  • In this study, poly lactic-co-glycolic acid (PLGA) nanoparticles (PNP) were prepared through double (w/o/w) emlusion and emulsifying solvent-evaporation technique using PLGA, which has biocompatibility and biodegradability. To maximize stability and bioavailability of the particles, chitosan-coated PLGA nanoparticles (CPNP) were prepared by charge interaction between PNP and chitosan. We demonstrated that CPNP can be utilized as a drug carrier of oral administration. The chemical structure of CPNP was analyzed by 1H-NMR and FT-IR, and all characteristic peaks appeared, confirming that it was successfully prepared. In addition, particle size and zeta potential of CPNP were analyzed using dynamic light scattering (DLS) while morphological images were obtained using transmission electron microscope (TEM). Thermal decomposition behavior of CPNP was observed through thermogravimetric analysis (TGA). In addition, the cytotoxicity of CPNP was confirmed by MTT assay at HEK293 and L929 cell lines, and it was proved that there is no toxicity confirmed by the cell viability of above 70% at all concentrations. These results suggest that the CPNP developed in this study may be used as an oral drug delivery carrier.

A Study on the Design of Stearic Acid-Based Solid Lipid Nanoparticles for the Improvement of Artificial Skin Tissue Transmittance of Serine (Serine 의 인공피부조직 투과 개선을 위한 Stearic Acid 기반 고형지질나노입자의 설계 연구)

  • Yeo, Sooho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.179-184
    • /
    • 2021
  • Stratum corneum known as a skin barrier, which maintains water in skin, is the outer layer of the skin. Natural moisturizing factors (NMF) are one of the constituents in stratum corneum and amino acids are the highest components among NMF. In this study, we designed stearic acid-based solid lipid nanoparticles (SLNs) for improved skin penetration of serine (Ser). Ser-capsulated SLN was manufactured by double-melting emulsification method. The mean particle size and zeta potential of SLNs were 256.30 ~ 416.93 nm and -17.60 ~ -35.27 mV, respectively. The higher the degree of hydrophobicity or hydrophilicity of emulsifiers, the smaller the particle size and the higher the stability and capsulation rate. In addition, skin penetration was conducted using SkinEthicTM RHE which is one of the reconstructed human epidermis models. The results of Ser penetration demonstrated that all SLNs enhanced than serine solution. The amount of enhanced Ser penetration from SLNs were approximately 4.1 ~ 6.2 times higher than that from Ser solution. Therefore, Ser-loaded SLN might be a promising drug delivery system for moisturizing formulation in cosmeceutical.