• 제목/요약/키워드: zero-order release rate

검색결과 29건 처리시간 0.024초

Zero-order Delivery of Alfuzosin Hydrochloride with Hydrophilic Polymers

  • Park, Jun-Bom;Hwang, Chang-Hwan;Noh, Hyung-Gon;Chae, Yu-Byeong;Song, Jun-Woo;Kang, Chin-Yang
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권5호
    • /
    • pp.285-289
    • /
    • 2010
  • Manufacturing a multi-layered tablet such as Xatral XL$^{(R)}$ is more complex and expensive than monolayered tablets, but mono-layered tablets may have less favorable release properties depending on the pharmacodynamics and pharmacokinetics of the active ingredient. We therefore sought to develop a monolayer tablet with a similar dissolution profile to the commercial alfuzosin sustained-release triple layered tablet (Xatral XL$^{(R)}$). We prepared four different mono-layered alfuzosin tablets with different concentrations of hydroxypropyl methycellulose and PVP K-90. Fomulation III with alfuzosion/mg-stearate/ HPMC/ PVP K-90 (10/5/110/95 mg/tab) has a similar dissolution rate to Xatral XL$^{(R)}$, with a similarity factor score of 81.4. However, the swelling and erosion rates of the two formulations were different, and NIR analysis showed differences in the mechanisms of drug release. Thus, although formulation III and Xatral XL$^{(R)}$ show similar dissolution rates, the mechanisms of drug release are different.

니페디핀을 함유한 생분해성 PLGA 웨이퍼의 제조와 특성분석 (Characteristics of Nifedipine Loaded PLGA Wafer)

  • 서선아;최학수;이동헌;강길선;이해방
    • 폴리머
    • /
    • 제25권6호
    • /
    • pp.884-892
    • /
    • 2001
  • 고혈압 치료제로 사용되는 니페디핀을 지속적으로 방출하는 제형을 제조하기 위하여 poly(L-lactide-co-glycolide) 글리코리드와 랙티드의 몰비 50: 50, 분자량:5000 g/mole)를 이용하여 직접 압축성형 방법으로 생분해성 웨이퍼를 제조하였다. 약물과 고분자의 함량비, 웨이퍼의 두께, 하이드록실 메틸셀룰로오스 (HPMC) 함유량 등을 조절하여 PLGA 웨이퍼를 제조하였고, 이들의 형태학적 특성과 방출거동 및 분해거동을 조사하였다. 제조된 웨이퍼는 11일동안 영차의 안정한 방출거동을 보였고, HPMC를 첨가함으로써 초기 방출거동을 제어하는 등 조건을 달리함으로써 방출거동을 조절할 수 있었다. 수분흡수율과 무게변화를 조사한 결과, 방출 실험 4일부터 웨이퍼의 무게 감소가 현저하게 발생하였고, 방출이 완료된 후에는 무게가 약 40% 감소하였다. 이러한 약물전달 시스템은 압축성형방법에 의해 제조하므로 제조가 간단하고, 약물방출 속도를 정확하게 제어할 수 있으므로 이식을 위한 제형으로 제조시 유용하게 쓰일 것으로 예상되었다.

  • PDF

Dithiocarbamate Chitosan을 Matrix로 이용한 고분자 약물의 개발 : Dithiocarbamate Chitosan-Ca(II)-Tetracycline Complex 의 생성 및 항균성 (Development of Polymeric Drugs Utilizing Dithiocarbamate Chitosan: Formation and Antimicrobial Activities of Dithiocarbamate Chitosan-Ca(II)-Tetracycline Complex)

  • 김윤택;김영미;한석규;정연진;유종호
    • 약학회지
    • /
    • 제39권1호
    • /
    • pp.48-54
    • /
    • 1995
  • Coupling of tetracycline(Tc) to dithiocarbamate chitosan(DTCC) via chelate bond was investigated varying reaction time, concentration, temperature, pH, and Ca(II)/Tc ratio. The amount of Tc bound to matrix increased to give a maximum and decreased as the reaction proceeded. The degree and rate of dissociation of Tc complex were affected by the reaction temperature, and pH. By running the reaction at low temperature and pH, the degree of dissociation was greatly diminished. Properties of drug-release from DTCC-Ca(II)-Tc complex were studied by batch- and flow-method and release of Tc and CA(II) by flow method followed nearly zero-order. DTCC-Ca(II)-Tc showed very prolonged antimicrobial activity compared to that of free Tc.

  • PDF

이온교환 능력을 가진 지지체에 부착된 나노 영가철을 이용한 질산성 질소의 환원과 부산물 제거 (Reduction of Nitrate using Nanoscale Zero-Valent Iron Supported on the Ion-Exchange Resin)

  • 박희수;박용민;조윤성;오수경;강상윤;유경민;이성재;최용수;이상협
    • 상하수도학회지
    • /
    • 제21권6호
    • /
    • pp.679-687
    • /
    • 2007
  • Nanoscale zero valent ion (nZVI) technology is emerging as an innovative method to treat contaminated groundwater. The activity of nZVI is very high due to their high specific surface area, and supporting this material can help to preserve its chemical nature by inhibiting oxidation. In this study, nZVI particles were attached to granular ion-exchange resin through borohydride reduction of ferrous ions, and chemical reduction of nitrate by this material was investigated as a potential technology to remove nitrate from groundwater. The pore structure and physical characteristics were measured and the change by the adsorption of nZVI was discussed. Batch tests were conducted to characterize the activity of the supported nZVI and the results indicated that the degradation of nitrate appeared to be a pseudo first-order reaction with the observed reaction rate constant of $0.425h^{-1}$ without pH control. The reduction process continued but at a much lower rate with a rate constant of $0.044h^{-1}$, which is likely limited by mass transfer. To assess the effects of other ions commonly found in groundwater, the same experiments were conducted in simulated groundwater with the same level of nitrate. In simulated groundwater, the rate constant was $0.078h^{-1}$ and it also reduced to $0.0021h^{-1}$ in later phase. The major limitation in application of ZVI for nitrate reduction is ammonium production. By using a support material with ion exchange capacity, the problem of ammonium release can be solved. The ammonium was not detected in the batch test, even when other competitive ions such as calcium and potassium existed.

글리콜라이드 단량체를 함유한 BICNU 함유 다중층 PLGA웨이퍼의 제조 및 특성결정 (Preparation and Characterization of BICND-loaded Multi-Layer PLGA Wafer Containing Glycolide Monomer)

  • 채강수;이진수;정제교;조선행;이해방;강길선
    • 폴리머
    • /
    • 제28권4호
    • /
    • pp.335-343
    • /
    • 2004
  • 카뮤스틴 (1,3-bis(2-chloroethy1-nitrosourea, BICNU)은 뇌종양 치료를 위하여 임상적으로 사용되는 약물로 짧은 생물학적 반감기를 가지고 있어 장기방출에 적합하지 않다. 하지만, poly(D,L-lactide-co-glycolide) (PLGA)는 벌크 분해 특성으로 인해 약물의 장기방출에 유용하며, PLGA의 유도체인 글리콜라이드 단량체는 독성이 없고 PLGA와 유사한 생분해성을 가지고 있어 BICNU의 방출조절에 이용된다. 이 실험에서 BICNU를 함유한 PLGA 웨이퍼는 일반적인 직접압축법에 의해 제조한 후 BICNU의 방출거동과 웨이펴의 분해속도를 전자주사현미경, 핵자기공명장치 그리고 젤투과크로마토그래피를 통해 관찰하였다. 또한, 글리콜라이드 단량체의 함량변화에 따른 다중층 웨이퍼를 제조하여 단일층 웨이퍼와의 방출거동을 비교하였다. 이러한 결과들로부터 BICNU를 함유한 PLGA 웨이퍼의 약물방출은 BICNU와 글리콜라이드 단량체의 함량이 증가할수록 증가하였고, 다중층 웨이퍼에서 외부층의 글리콜라이드 단량체와 BICNU가 약물방출 거동과 분해속도에 영향을 미친다는 것을 확인하였다.

히드록시프로필셀룰로오스와 카르보폴을 이용한 부유성 히드로겔 매트릭스의 제조 및 in Vitro 평가 (Preparation and in vitro Evaluation of a Buoyant Hydrogel Matrix with Hydroxypropylcellulose and Carbopol)

  • 김상헌;이민성;최영욱
    • Journal of Pharmaceutical Investigation
    • /
    • 제26권2호
    • /
    • pp.137-144
    • /
    • 1996
  • The study was carried out for the preparation and evaluation of a buoyant hydrogel matrix (BHM), which is buoyant in a neutral or in pH 2.0 buffer solution, by the aspects of buoyancy, swelling, and drug release. Physical mixtures of HPC and CP in various molar ratio were employed as a mucoadhesive polymer which swells and controls the rate of drug release. Anhydrous citric acid and sodium bicarbonate in the molar ratio of 1:3 were employed as effervescing agents which provide a buoyancy for the mucoadhesive polymeric matrix. The buoyancy in vitro was expressed as both floating time$(T_{fl})$ and surfing time$(T_{sf})$, which are the time required for floating from the bottom to the surface of the medium and the time to keep the floated state at the surface of medium during release studies, respectively. A close relationship was observed between the buoyancy and the amount of effervescing agent added. $T_{fl}$ of the buoyant hydrogel matrices were decreased to about 10 seconds linearly with increasing the amount of effervescing agent in the range of 5 to 15%. $T_{sf}$ of the buoyant hydrogel matrices were varied from 1 to 3 hr depending on the amount of effervescing agent. The swelling was observed by changes in diameter of the buoyant hydrogel matrices in distilled water or acidic buffer solution, resulted in dependences on pH and the amount of effervescing agents. The release of hydrochlorothiazide from the buoyant hydrogel matrices were followed by apparent zero-order kinetics, while the buoyant hydrogel matrices were floated at the surface and maintaining their swollen shapes.

  • PDF

Controlled Release of Nerve Growth Factor from Sandwiched Poly(L-lactide-co-glycolide) Films for the Application in Neural Tissue Engineering

  • Gilson Khang;Jeon, Eun-Kyung;John M. Rhee;Lee, Ilwoo;Lee, Sang-Jin;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • 제11권5호
    • /
    • pp.334-340
    • /
    • 2003
  • In order to fabricate new sustained delivery device of nerve growth factor (NGF), we developed NGF-loaded biodegradable poly(L-lactide-co-glycolide) (PLGA, the mole ratio of lactide to glycolide 75:25, molecular weight: 83,000 and 43,000 g/mole, respectively) film by novel and simple sandwich solvent casting method for the possibility of the application of neural tissue engineering. PLGA was copolymerized by direct condensation reaction and the molecular weight was controlled by reaction time. Released behavior of NGF from NGF-loaded films was characterized by enzyme linked immunosorbent assay (ELISA) and degradation characteristics were observed by scanning electron microscopy (SEM) and gel permeation chromatography (GPC). The bioactivity of released NGF was identified using a rat pheochromocytoma (PC-12) cell based bioassay. The release of NGF from the NGF-loaded PLGA films was prolonged over 35 days with zero-order rate of 0.5-0.8 ng NGF/day without initial burst and could be controlled by the variations of molecular weight and NGF loading amount. After 7 days NGF released in phosphate buffered saline and PC-12 cell cultured on the NGF-loaded PLGA film for 3 days. The released NGF stimulated neurite sprouting in cultured PC-12 cells, that is to say, the remained NGF in the NGF/PLGA film at 37 $^{\circ}C$ for 7 days was still bioactive. This study suggested that NGF-loaded PLGA sandwich film is released the desired period in delivery system and useful neuronal growth culture as nerve contact guidance tube for the application of neural tissue engineering.

Buccal Delivery of [D-Ala2, D-Leu5]Enkephalin Incorporated in Mucoadhesive Poly(acrylic acid) Hydrogels

  • Lee, Jae-Hwi;Lee, Yoon-Jin;Kang, Kyoung-Hoon;Nam, Dae-Young;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권5호
    • /
    • pp.369-373
    • /
    • 2005
  • The objectives of the current work is to understand the factors impacting the formulation and performance of a Carbopol mucoadhesive buccal delvery system for a model peptide drug, $[D-Ala{^2},\;D-Leu{^5}]$enkephalin (DADLE, Mw=569.7) with comparable chemical and enzymatic stability. Specifically, in vitro buccal DADLE delivery from the cross-linked poly(acrylic acid) (PAA) hydrogel system was characterized. In addition, the influences of several penetration enhancers on the ex vivo buccal absorption of DADLE were also studied. In this study, the PAA hydrogels generally swell to 100% of their original weight in the phosphate pH 7.4 buffer. The water penetration into the PAA hydrogel occurred based on a zero-order kinetics for the first 60 min and steadily decreased afterwards. From the release study, it can be seen that the initial DADLE release was so rapid and the rate of release of DADLE decreased as the time elapsed. The porcine buccal tissue was found to be permeable to DADLE with a flux value of $0.07%/cm{^2}/hr({\pm}0.01\;SD)$. From the ex vivo diffusion study, it was found that sodium taurodihydrofusidate showed a greater degree of enhancement compared to the phospholipids with an Enhancement Ratio (ER) of 8.7 compared to 2.7 and 1.9 for didecanoylphosphatidylcholine and lysophosphatidylcholine, respectively. The work encompassed within this paper has demonstrated the feasibility of using the PAA hydrogel delivery system with its good mucoadhesive properties for the buccal delivery of peptides.

고온공기주입 공법 적용시 지중온도가 생분해속도에 미치는 영향 (Effects of Soil Temperature on Biodegradation Rate of Diesel Compounds from a Field Pilot Test Using Hot Air Injection Process)

  • 박기호;신항식;박민호;홍승모;고석오
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제10권4호
    • /
    • pp.45-53
    • /
    • 2005
  • 본 연구의 목적은 실제 디젤유로 오염된 불포화 토양을 복원하기 위해 수행되었던 고온공기 주입 파일롯 테스트에서 토양온도 변화가 생분해 속도에 미치는 영향을 알아보고자 히는 것이었고, 이것을 토대로 현장 생분해 속도, 최적의 생분해 온도 및 1차 분해 속도 상수를 도출하고 총복원기간을 예측해 보았다. 실험은 과거 디젤유 누출 사고가 있었던 고농도 오염지역에 대해 토양의 온도별 현장 호흡률(in-situ respiration)을 약 10일 간격으로 측정하는 식으로 진행되었다. 적용된 복원공법은 고온공기를 주입/추출하여 1차적으로 오염된 디젤 성분을 휘발, 추출하고 이어서 토양의 잔열과 미생물 생분해를 이용하여 토양내 잔류 디젤을 제거하는 후속공정으로 이루어졌다. 토양온도 $26\sim60^{\circ}C$ 범위에서 산소소비속도는 $2.2\sim46.3%/day$ 값을 보였고 $32^{\circ}C$에서 가장 빠른 46.3%/day를 나타냈다. 산소소비속도를 기준으로 하여 계산한 0차반응 생분해 속도(biodegradation rate)는 $6.5\sim21.3mg/kg-day$ 이었고 역시 토양온도 $ 32^{\circ}C$ 에서 최대값을 보였고 그 이전과 이후는 각각 감소된 값을 나타냈다. 주기적으로 측정된 현장호흡률을 바탕으로 계산한 1차 분해속도 k는 몇가지 온도 범위에서 즉, $0.0027\;d^{-1}(@32.8^{\circ}C),\;0.0013\;d^{-1}(@41.1^{\circ}C)$ 그리고 $0.0006\;d^{-1}(@52.7^{\circ}C)$ 이었다. 토양의 초기 TPH 농도 대비목표 농도를 870 mg/kg으로 가정했을 경우 소요 복원기간은 $2\mu9$년 정도 소요되는 것으로 예측되었다.